Page MenuHomeSoftware Heritage

D1764.id5949.diff
No OneTemporary

D1764.id5949.diff

diff --git a/conf/cassandra.yaml b/conf/cassandra.yaml
new file mode 100644
--- /dev/null
+++ b/conf/cassandra.yaml
@@ -0,0 +1,1242 @@
+# Cassandra storage config YAML
+
+# NOTE:
+# See http://wiki.apache.org/cassandra/StorageConfiguration for
+# full explanations of configuration directives
+# /NOTE
+
+# The name of the cluster. This is mainly used to prevent machines in
+# one logical cluster from joining another.
+cluster_name: 'Test Cluster'
+
+# This defines the number of tokens randomly assigned to this node on the ring
+# The more tokens, relative to other nodes, the larger the proportion of data
+# that this node will store. You probably want all nodes to have the same number
+# of tokens assuming they have equal hardware capability.
+#
+# If you leave this unspecified, Cassandra will use the default of 1 token for legacy compatibility,
+# and will use the initial_token as described below.
+#
+# Specifying initial_token will override this setting on the node's initial start,
+# on subsequent starts, this setting will apply even if initial token is set.
+#
+# If you already have a cluster with 1 token per node, and wish to migrate to
+# multiple tokens per node, see http://wiki.apache.org/cassandra/Operations
+num_tokens: 256
+
+# Triggers automatic allocation of num_tokens tokens for this node. The allocation
+# algorithm attempts to choose tokens in a way that optimizes replicated load over
+# the nodes in the datacenter for the replication strategy used by the specified
+# keyspace.
+#
+# The load assigned to each node will be close to proportional to its number of
+# vnodes.
+#
+# Only supported with the Murmur3Partitioner.
+# allocate_tokens_for_keyspace: KEYSPACE
+
+# initial_token allows you to specify tokens manually. While you can use it with
+# vnodes (num_tokens > 1, above) -- in which case you should provide a
+# comma-separated list -- it's primarily used when adding nodes to legacy clusters
+# that do not have vnodes enabled.
+# initial_token:
+
+# See http://wiki.apache.org/cassandra/HintedHandoff
+# May either be "true" or "false" to enable globally
+hinted_handoff_enabled: true
+
+# When hinted_handoff_enabled is true, a black list of data centers that will not
+# perform hinted handoff
+# hinted_handoff_disabled_datacenters:
+# - DC1
+# - DC2
+
+# this defines the maximum amount of time a dead host will have hints
+# generated. After it has been dead this long, new hints for it will not be
+# created until it has been seen alive and gone down again.
+max_hint_window_in_ms: 10800000 # 3 hours
+
+# Maximum throttle in KBs per second, per delivery thread. This will be
+# reduced proportionally to the number of nodes in the cluster. (If there
+# are two nodes in the cluster, each delivery thread will use the maximum
+# rate; if there are three, each will throttle to half of the maximum,
+# since we expect two nodes to be delivering hints simultaneously.)
+hinted_handoff_throttle_in_kb: 1024
+
+# Number of threads with which to deliver hints;
+# Consider increasing this number when you have multi-dc deployments, since
+# cross-dc handoff tends to be slower
+max_hints_delivery_threads: 2
+
+# Directory where Cassandra should store hints.
+# If not set, the default directory is $CASSANDRA_HOME/data/hints.
+# hints_directory: /var/lib/cassandra/hints
+hints_directory: /var/lib/cassandra/hints
+
+# How often hints should be flushed from the internal buffers to disk.
+# Will *not* trigger fsync.
+hints_flush_period_in_ms: 10000
+
+# Maximum size for a single hints file, in megabytes.
+max_hints_file_size_in_mb: 128
+
+# Compression to apply to the hint files. If omitted, hints files
+# will be written uncompressed. LZ4, Snappy, and Deflate compressors
+# are supported.
+#hints_compression:
+# - class_name: LZ4Compressor
+# parameters:
+# -
+
+# Maximum throttle in KBs per second, total. This will be
+# reduced proportionally to the number of nodes in the cluster.
+batchlog_replay_throttle_in_kb: 1024
+
+# Authentication backend, implementing IAuthenticator; used to identify users
+# Out of the box, Cassandra provides org.apache.cassandra.auth.{AllowAllAuthenticator,
+# PasswordAuthenticator}.
+#
+# - AllowAllAuthenticator performs no checks - set it to disable authentication.
+# - PasswordAuthenticator relies on username/password pairs to authenticate
+# users. It keeps usernames and hashed passwords in system_auth.roles table.
+# Please increase system_auth keyspace replication factor if you use this authenticator.
+# If using PasswordAuthenticator, CassandraRoleManager must also be used (see below)
+authenticator: AllowAllAuthenticator
+
+# Authorization backend, implementing IAuthorizer; used to limit access/provide permissions
+# Out of the box, Cassandra provides org.apache.cassandra.auth.{AllowAllAuthorizer,
+# CassandraAuthorizer}.
+#
+# - AllowAllAuthorizer allows any action to any user - set it to disable authorization.
+# - CassandraAuthorizer stores permissions in system_auth.role_permissions table. Please
+# increase system_auth keyspace replication factor if you use this authorizer.
+authorizer: AllowAllAuthorizer
+
+# Part of the Authentication & Authorization backend, implementing IRoleManager; used
+# to maintain grants and memberships between roles.
+# Out of the box, Cassandra provides org.apache.cassandra.auth.CassandraRoleManager,
+# which stores role information in the system_auth keyspace. Most functions of the
+# IRoleManager require an authenticated login, so unless the configured IAuthenticator
+# actually implements authentication, most of this functionality will be unavailable.
+#
+# - CassandraRoleManager stores role data in the system_auth keyspace. Please
+# increase system_auth keyspace replication factor if you use this role manager.
+role_manager: CassandraRoleManager
+
+# Validity period for roles cache (fetching granted roles can be an expensive
+# operation depending on the role manager, CassandraRoleManager is one example)
+# Granted roles are cached for authenticated sessions in AuthenticatedUser and
+# after the period specified here, become eligible for (async) reload.
+# Defaults to 2000, set to 0 to disable caching entirely.
+# Will be disabled automatically for AllowAllAuthenticator.
+roles_validity_in_ms: 2000
+
+# Refresh interval for roles cache (if enabled).
+# After this interval, cache entries become eligible for refresh. Upon next
+# access, an async reload is scheduled and the old value returned until it
+# completes. If roles_validity_in_ms is non-zero, then this must be
+# also.
+# Defaults to the same value as roles_validity_in_ms.
+# roles_update_interval_in_ms: 2000
+
+# Validity period for permissions cache (fetching permissions can be an
+# expensive operation depending on the authorizer, CassandraAuthorizer is
+# one example). Defaults to 2000, set to 0 to disable.
+# Will be disabled automatically for AllowAllAuthorizer.
+permissions_validity_in_ms: 2000
+
+# Refresh interval for permissions cache (if enabled).
+# After this interval, cache entries become eligible for refresh. Upon next
+# access, an async reload is scheduled and the old value returned until it
+# completes. If permissions_validity_in_ms is non-zero, then this must be
+# also.
+# Defaults to the same value as permissions_validity_in_ms.
+# permissions_update_interval_in_ms: 2000
+
+# Validity period for credentials cache. This cache is tightly coupled to
+# the provided PasswordAuthenticator implementation of IAuthenticator. If
+# another IAuthenticator implementation is configured, this cache will not
+# be automatically used and so the following settings will have no effect.
+# Please note, credentials are cached in their encrypted form, so while
+# activating this cache may reduce the number of queries made to the
+# underlying table, it may not bring a significant reduction in the
+# latency of individual authentication attempts.
+# Defaults to 2000, set to 0 to disable credentials caching.
+credentials_validity_in_ms: 2000
+
+# Refresh interval for credentials cache (if enabled).
+# After this interval, cache entries become eligible for refresh. Upon next
+# access, an async reload is scheduled and the old value returned until it
+# completes. If credentials_validity_in_ms is non-zero, then this must be
+# also.
+# Defaults to the same value as credentials_validity_in_ms.
+# credentials_update_interval_in_ms: 2000
+
+# The partitioner is responsible for distributing groups of rows (by
+# partition key) across nodes in the cluster. You should leave this
+# alone for new clusters. The partitioner can NOT be changed without
+# reloading all data, so when upgrading you should set this to the
+# same partitioner you were already using.
+#
+# Besides Murmur3Partitioner, partitioners included for backwards
+# compatibility include RandomPartitioner, ByteOrderedPartitioner, and
+# OrderPreservingPartitioner.
+#
+partitioner: org.apache.cassandra.dht.Murmur3Partitioner
+
+# Directories where Cassandra should store data on disk. Cassandra
+# will spread data evenly across them, subject to the granularity of
+# the configured compaction strategy.
+# If not set, the default directory is $CASSANDRA_HOME/data/data.
+data_file_directories:
+ - /var/lib/cassandra/data
+
+# commit log. when running on magnetic HDD, this should be a
+# separate spindle than the data directories.
+# If not set, the default directory is $CASSANDRA_HOME/data/commitlog.
+commitlog_directory: /var/lib/cassandra/commitlog
+
+# Enable / disable CDC functionality on a per-node basis. This modifies the logic used
+# for write path allocation rejection (standard: never reject. cdc: reject Mutation
+# containing a CDC-enabled table if at space limit in cdc_raw_directory).
+cdc_enabled: false
+
+# CommitLogSegments are moved to this directory on flush if cdc_enabled: true and the
+# segment contains mutations for a CDC-enabled table. This should be placed on a
+# separate spindle than the data directories. If not set, the default directory is
+# $CASSANDRA_HOME/data/cdc_raw.
+# cdc_raw_directory: /var/lib/cassandra/cdc_raw
+
+# Policy for data disk failures:
+#
+# die
+# shut down gossip and client transports and kill the JVM for any fs errors or
+# single-sstable errors, so the node can be replaced.
+#
+# stop_paranoid
+# shut down gossip and client transports even for single-sstable errors,
+# kill the JVM for errors during startup.
+#
+# stop
+# shut down gossip and client transports, leaving the node effectively dead, but
+# can still be inspected via JMX, kill the JVM for errors during startup.
+#
+# best_effort
+# stop using the failed disk and respond to requests based on
+# remaining available sstables. This means you WILL see obsolete
+# data at CL.ONE!
+#
+# ignore
+# ignore fatal errors and let requests fail, as in pre-1.2 Cassandra
+disk_failure_policy: stop
+
+# Policy for commit disk failures:
+#
+# die
+# shut down gossip and Thrift and kill the JVM, so the node can be replaced.
+#
+# stop
+# shut down gossip and Thrift, leaving the node effectively dead, but
+# can still be inspected via JMX.
+#
+# stop_commit
+# shutdown the commit log, letting writes collect but
+# continuing to service reads, as in pre-2.0.5 Cassandra
+#
+# ignore
+# ignore fatal errors and let the batches fail
+commit_failure_policy: stop
+
+# Maximum size of the native protocol prepared statement cache
+#
+# Valid values are either "auto" (omitting the value) or a value greater 0.
+#
+# Note that specifying a too large value will result in long running GCs and possbily
+# out-of-memory errors. Keep the value at a small fraction of the heap.
+#
+# If you constantly see "prepared statements discarded in the last minute because
+# cache limit reached" messages, the first step is to investigate the root cause
+# of these messages and check whether prepared statements are used correctly -
+# i.e. use bind markers for variable parts.
+#
+# Do only change the default value, if you really have more prepared statements than
+# fit in the cache. In most cases it is not neccessary to change this value.
+# Constantly re-preparing statements is a performance penalty.
+#
+# Default value ("auto") is 1/256th of the heap or 10MB, whichever is greater
+prepared_statements_cache_size_mb:
+
+# Maximum size of the Thrift prepared statement cache
+#
+# If you do not use Thrift at all, it is safe to leave this value at "auto".
+#
+# See description of 'prepared_statements_cache_size_mb' above for more information.
+#
+# Default value ("auto") is 1/256th of the heap or 10MB, whichever is greater
+thrift_prepared_statements_cache_size_mb:
+
+# Maximum size of the key cache in memory.
+#
+# Each key cache hit saves 1 seek and each row cache hit saves 2 seeks at the
+# minimum, sometimes more. The key cache is fairly tiny for the amount of
+# time it saves, so it's worthwhile to use it at large numbers.
+# The row cache saves even more time, but must contain the entire row,
+# so it is extremely space-intensive. It's best to only use the
+# row cache if you have hot rows or static rows.
+#
+# NOTE: if you reduce the size, you may not get you hottest keys loaded on startup.
+#
+# Default value is empty to make it "auto" (min(5% of Heap (in MB), 100MB)). Set to 0 to disable key cache.
+key_cache_size_in_mb: 1024
+
+# Duration in seconds after which Cassandra should
+# save the key cache. Caches are saved to saved_caches_directory as
+# specified in this configuration file.
+#
+# Saved caches greatly improve cold-start speeds, and is relatively cheap in
+# terms of I/O for the key cache. Row cache saving is much more expensive and
+# has limited use.
+#
+# Default is 14400 or 4 hours.
+key_cache_save_period: 14400
+
+# Number of keys from the key cache to save
+# Disabled by default, meaning all keys are going to be saved
+# key_cache_keys_to_save: 100
+
+# Row cache implementation class name. Available implementations:
+#
+# org.apache.cassandra.cache.OHCProvider
+# Fully off-heap row cache implementation (default).
+#
+# org.apache.cassandra.cache.SerializingCacheProvider
+# This is the row cache implementation availabile
+# in previous releases of Cassandra.
+# row_cache_class_name: org.apache.cassandra.cache.OHCProvider
+
+# Maximum size of the row cache in memory.
+# Please note that OHC cache implementation requires some additional off-heap memory to manage
+# the map structures and some in-flight memory during operations before/after cache entries can be
+# accounted against the cache capacity. This overhead is usually small compared to the whole capacity.
+# Do not specify more memory that the system can afford in the worst usual situation and leave some
+# headroom for OS block level cache. Do never allow your system to swap.
+#
+# Default value is 0, to disable row caching.
+row_cache_size_in_mb: 0
+
+# Duration in seconds after which Cassandra should save the row cache.
+# Caches are saved to saved_caches_directory as specified in this configuration file.
+#
+# Saved caches greatly improve cold-start speeds, and is relatively cheap in
+# terms of I/O for the key cache. Row cache saving is much more expensive and
+# has limited use.
+#
+# Default is 0 to disable saving the row cache.
+row_cache_save_period: 0
+
+# Number of keys from the row cache to save.
+# Specify 0 (which is the default), meaning all keys are going to be saved
+# row_cache_keys_to_save: 100
+
+# Maximum size of the counter cache in memory.
+#
+# Counter cache helps to reduce counter locks' contention for hot counter cells.
+# In case of RF = 1 a counter cache hit will cause Cassandra to skip the read before
+# write entirely. With RF > 1 a counter cache hit will still help to reduce the duration
+# of the lock hold, helping with hot counter cell updates, but will not allow skipping
+# the read entirely. Only the local (clock, count) tuple of a counter cell is kept
+# in memory, not the whole counter, so it's relatively cheap.
+#
+# NOTE: if you reduce the size, you may not get you hottest keys loaded on startup.
+#
+# Default value is empty to make it "auto" (min(2.5% of Heap (in MB), 50MB)). Set to 0 to disable counter cache.
+# NOTE: if you perform counter deletes and rely on low gcgs, you should disable the counter cache.
+counter_cache_size_in_mb:
+
+# Duration in seconds after which Cassandra should
+# save the counter cache (keys only). Caches are saved to saved_caches_directory as
+# specified in this configuration file.
+#
+# Default is 7200 or 2 hours.
+counter_cache_save_period: 7200
+
+# Number of keys from the counter cache to save
+# Disabled by default, meaning all keys are going to be saved
+# counter_cache_keys_to_save: 100
+
+# saved caches
+# If not set, the default directory is $CASSANDRA_HOME/data/saved_caches.
+saved_caches_directory: /var/lib/cassandra/saved_caches
+
+
+# commitlog_sync may be either "periodic" or "batch."
+#
+# When in batch mode, Cassandra won't ack writes until the commit log
+# has been fsynced to disk. It will wait
+# commitlog_sync_batch_window_in_ms milliseconds between fsyncs.
+# This window should be kept short because the writer threads will
+# be unable to do extra work while waiting. (You may need to increase
+# concurrent_writes for the same reason.)
+#
+# commitlog_sync: batch
+# commitlog_sync_batch_window_in_ms: 2
+#
+# the other option is "periodic" where writes may be acked immediately
+# and the CommitLog is simply synced every commitlog_sync_period_in_ms
+# milliseconds.
+commitlog_sync: periodic
+commitlog_sync_period_in_ms: 10000
+
+# The size of the individual commitlog file segments. A commitlog
+# segment may be archived, deleted, or recycled once all the data
+# in it (potentially from each columnfamily in the system) has been
+# flushed to sstables.
+#
+# The default size is 32, which is almost always fine, but if you are
+# archiving commitlog segments (see commitlog_archiving.properties),
+# then you probably want a finer granularity of archiving; 8 or 16 MB
+# is reasonable.
+# Max mutation size is also configurable via max_mutation_size_in_kb setting in
+# cassandra.yaml. The default is half the size commitlog_segment_size_in_mb * 1024.
+# This should be positive and less than 2048.
+#
+# NOTE: If max_mutation_size_in_kb is set explicitly then commitlog_segment_size_in_mb must
+# be set to at least twice the size of max_mutation_size_in_kb / 1024
+#
+commitlog_segment_size_in_mb: 512
+# This is much bigger than the default (32), but the segment size must be
+# larger than the largest row we want to write. And we have rows as large
+# as 300MB, so...
+
+# Compression to apply to the commit log. If omitted, the commit log
+# will be written uncompressed. LZ4, Snappy, and Deflate compressors
+# are supported.
+# commitlog_compression:
+# - class_name: LZ4Compressor
+# parameters:
+# -
+
+# any class that implements the SeedProvider interface and has a
+# constructor that takes a Map<String, String> of parameters will do.
+seed_provider:
+ # Addresses of hosts that are deemed contact points.
+ # Cassandra nodes use this list of hosts to find each other and learn
+ # the topology of the ring. You must change this if you are running
+ # multiple nodes!
+ - class_name: org.apache.cassandra.locator.SimpleSeedProvider
+ parameters:
+ # seeds is actually a comma-delimited list of addresses.
+ # Ex: "<ip1>,<ip2>,<ip3>"
+ - seeds: "172.20.0.7"
+
+# For workloads with more data than can fit in memory, Cassandra's
+# bottleneck will be reads that need to fetch data from
+# disk. "concurrent_reads" should be set to (16 * number_of_drives) in
+# order to allow the operations to enqueue low enough in the stack
+# that the OS and drives can reorder them. Same applies to
+# "concurrent_counter_writes", since counter writes read the current
+# values before incrementing and writing them back.
+#
+# On the other hand, since writes are almost never IO bound, the ideal
+# number of "concurrent_writes" is dependent on the number of cores in
+# your system; (8 * number_of_cores) is a good rule of thumb.
+concurrent_reads: 32
+concurrent_writes: 32
+concurrent_counter_writes: 32
+
+# For materialized view writes, as there is a read involved, so this should
+# be limited by the less of concurrent reads or concurrent writes.
+concurrent_materialized_view_writes: 32
+
+# Maximum memory to use for sstable chunk cache and buffer pooling.
+# 32MB of this are reserved for pooling buffers, the rest is used as an
+# cache that holds uncompressed sstable chunks.
+# Defaults to the smaller of 1/4 of heap or 512MB. This pool is allocated off-heap,
+# so is in addition to the memory allocated for heap. The cache also has on-heap
+# overhead which is roughly 128 bytes per chunk (i.e. 0.2% of the reserved size
+# if the default 64k chunk size is used).
+# Memory is only allocated when needed.
+# file_cache_size_in_mb: 512
+
+# Flag indicating whether to allocate on or off heap when the sstable buffer
+# pool is exhausted, that is when it has exceeded the maximum memory
+# file_cache_size_in_mb, beyond which it will not cache buffers but allocate on request.
+
+# buffer_pool_use_heap_if_exhausted: true
+
+# The strategy for optimizing disk read
+# Possible values are:
+# ssd (for solid state disks, the default)
+# spinning (for spinning disks)
+# disk_optimization_strategy: ssd
+
+# Total permitted memory to use for memtables. Cassandra will stop
+# accepting writes when the limit is exceeded until a flush completes,
+# and will trigger a flush based on memtable_cleanup_threshold
+# If omitted, Cassandra will set both to 1/4 the size of the heap.
+# memtable_heap_space_in_mb: 2048
+# memtable_offheap_space_in_mb: 2048
+
+# memtable_cleanup_threshold is deprecated. The default calculation
+# is the only reasonable choice. See the comments on memtable_flush_writers
+# for more information.
+#
+# Ratio of occupied non-flushing memtable size to total permitted size
+# that will trigger a flush of the largest memtable. Larger mct will
+# mean larger flushes and hence less compaction, but also less concurrent
+# flush activity which can make it difficult to keep your disks fed
+# under heavy write load.
+#
+# memtable_cleanup_threshold defaults to 1 / (memtable_flush_writers + 1)
+# memtable_cleanup_threshold: 0.11
+
+# Specify the way Cassandra allocates and manages memtable memory.
+# Options are:
+#
+# heap_buffers
+# on heap nio buffers
+#
+# offheap_buffers
+# off heap (direct) nio buffers
+#
+# offheap_objects
+# off heap objects
+memtable_allocation_type: heap_buffers
+
+# Total space to use for commit logs on disk.
+#
+# If space gets above this value, Cassandra will flush every dirty CF
+# in the oldest segment and remove it. So a small total commitlog space
+# will tend to cause more flush activity on less-active columnfamilies.
+#
+# The default value is the smaller of 8192, and 1/4 of the total space
+# of the commitlog volume.
+#
+# commitlog_total_space_in_mb: 8192
+
+# This sets the number of memtable flush writer threads per disk
+# as well as the total number of memtables that can be flushed concurrently.
+# These are generally a combination of compute and IO bound.
+#
+# Memtable flushing is more CPU efficient than memtable ingest and a single thread
+# can keep up with the ingest rate of a whole server on a single fast disk
+# until it temporarily becomes IO bound under contention typically with compaction.
+# At that point you need multiple flush threads. At some point in the future
+# it may become CPU bound all the time.
+#
+# You can tell if flushing is falling behind using the MemtablePool.BlockedOnAllocation
+# metric which should be 0, but will be non-zero if threads are blocked waiting on flushing
+# to free memory.
+#
+# memtable_flush_writers defaults to two for a single data directory.
+# This means that two memtables can be flushed concurrently to the single data directory.
+# If you have multiple data directories the default is one memtable flushing at a time
+# but the flush will use a thread per data directory so you will get two or more writers.
+#
+# Two is generally enough to flush on a fast disk [array] mounted as a single data directory.
+# Adding more flush writers will result in smaller more frequent flushes that introduce more
+# compaction overhead.
+#
+# There is a direct tradeoff between number of memtables that can be flushed concurrently
+# and flush size and frequency. More is not better you just need enough flush writers
+# to never stall waiting for flushing to free memory.
+#
+#memtable_flush_writers: 2
+
+# Total space to use for change-data-capture logs on disk.
+#
+# If space gets above this value, Cassandra will throw WriteTimeoutException
+# on Mutations including tables with CDC enabled. A CDCCompactor is responsible
+# for parsing the raw CDC logs and deleting them when parsing is completed.
+#
+# The default value is the min of 4096 mb and 1/8th of the total space
+# of the drive where cdc_raw_directory resides.
+# cdc_total_space_in_mb: 4096
+
+# When we hit our cdc_raw limit and the CDCCompactor is either running behind
+# or experiencing backpressure, we check at the following interval to see if any
+# new space for cdc-tracked tables has been made available. Default to 250ms
+# cdc_free_space_check_interval_ms: 250
+
+# A fixed memory pool size in MB for for SSTable index summaries. If left
+# empty, this will default to 5% of the heap size. If the memory usage of
+# all index summaries exceeds this limit, SSTables with low read rates will
+# shrink their index summaries in order to meet this limit. However, this
+# is a best-effort process. In extreme conditions Cassandra may need to use
+# more than this amount of memory.
+index_summary_capacity_in_mb:
+
+# How frequently index summaries should be resampled. This is done
+# periodically to redistribute memory from the fixed-size pool to sstables
+# proportional their recent read rates. Setting to -1 will disable this
+# process, leaving existing index summaries at their current sampling level.
+index_summary_resize_interval_in_minutes: 60
+
+# Whether to, when doing sequential writing, fsync() at intervals in
+# order to force the operating system to flush the dirty
+# buffers. Enable this to avoid sudden dirty buffer flushing from
+# impacting read latencies. Almost always a good idea on SSDs; not
+# necessarily on platters.
+trickle_fsync: false
+trickle_fsync_interval_in_kb: 10240
+
+# TCP port, for commands and data
+# For security reasons, you should not expose this port to the internet. Firewall it if needed.
+storage_port: 7000
+
+# SSL port, for encrypted communication. Unused unless enabled in
+# encryption_options
+# For security reasons, you should not expose this port to the internet. Firewall it if needed.
+ssl_storage_port: 7001
+
+# Address or interface to bind to and tell other Cassandra nodes to connect to.
+# You _must_ change this if you want multiple nodes to be able to communicate!
+#
+# Set listen_address OR listen_interface, not both.
+#
+# Leaving it blank leaves it up to InetAddress.getLocalHost(). This
+# will always do the Right Thing _if_ the node is properly configured
+# (hostname, name resolution, etc), and the Right Thing is to use the
+# address associated with the hostname (it might not be).
+#
+# Setting listen_address to 0.0.0.0 is always wrong.
+#
+listen_address: 172.20.0.7
+
+# Set listen_address OR listen_interface, not both. Interfaces must correspond
+# to a single address, IP aliasing is not supported.
+# listen_interface: eth0
+
+# If you choose to specify the interface by name and the interface has an ipv4 and an ipv6 address
+# you can specify which should be chosen using listen_interface_prefer_ipv6. If false the first ipv4
+# address will be used. If true the first ipv6 address will be used. Defaults to false preferring
+# ipv4. If there is only one address it will be selected regardless of ipv4/ipv6.
+# listen_interface_prefer_ipv6: false
+
+# Address to broadcast to other Cassandra nodes
+# Leaving this blank will set it to the same value as listen_address
+broadcast_address: 172.20.0.7
+
+# When using multiple physical network interfaces, set this
+# to true to listen on broadcast_address in addition to
+# the listen_address, allowing nodes to communicate in both
+# interfaces.
+# Ignore this property if the network configuration automatically
+# routes between the public and private networks such as EC2.
+# listen_on_broadcast_address: false
+
+# Internode authentication backend, implementing IInternodeAuthenticator;
+# used to allow/disallow connections from peer nodes.
+# internode_authenticator: org.apache.cassandra.auth.AllowAllInternodeAuthenticator
+
+# Whether to start the native transport server.
+# Please note that the address on which the native transport is bound is the
+# same as the rpc_address. The port however is different and specified below.
+start_native_transport: true
+# port for the CQL native transport to listen for clients on
+# For security reasons, you should not expose this port to the internet. Firewall it if needed.
+native_transport_port: 9042
+# Enabling native transport encryption in client_encryption_options allows you to either use
+# encryption for the standard port or to use a dedicated, additional port along with the unencrypted
+# standard native_transport_port.
+# Enabling client encryption and keeping native_transport_port_ssl disabled will use encryption
+# for native_transport_port. Setting native_transport_port_ssl to a different value
+# from native_transport_port will use encryption for native_transport_port_ssl while
+# keeping native_transport_port unencrypted.
+# native_transport_port_ssl: 9142
+# The maximum threads for handling requests when the native transport is used.
+# This is similar to rpc_max_threads though the default differs slightly (and
+# there is no native_transport_min_threads, idle threads will always be stopped
+# after 30 seconds).
+# native_transport_max_threads: 128
+#
+# The maximum size of allowed frame. Frame (requests) larger than this will
+# be rejected as invalid. The default is 256MB. If you're changing this parameter,
+# you may want to adjust max_value_size_in_mb accordingly. This should be positive and less than 2048.
+# native_transport_max_frame_size_in_mb: 256
+
+# The maximum number of concurrent client connections.
+# The default is -1, which means unlimited.
+# native_transport_max_concurrent_connections: -1
+
+# The maximum number of concurrent client connections per source ip.
+# The default is -1, which means unlimited.
+# native_transport_max_concurrent_connections_per_ip: -1
+
+# Whether to start the thrift rpc server.
+start_rpc: false
+
+# The address or interface to bind the Thrift RPC service and native transport
+# server to.
+#
+# Set rpc_address OR rpc_interface, not both.
+#
+# Leaving rpc_address blank has the same effect as on listen_address
+# (i.e. it will be based on the configured hostname of the node).
+#
+# Note that unlike listen_address, you can specify 0.0.0.0, but you must also
+# set broadcast_rpc_address to a value other than 0.0.0.0.
+#
+# For security reasons, you should not expose this port to the internet. Firewall it if needed.
+rpc_address: 0.0.0.0
+
+# Set rpc_address OR rpc_interface, not both. Interfaces must correspond
+# to a single address, IP aliasing is not supported.
+# rpc_interface: eth1
+
+# If you choose to specify the interface by name and the interface has an ipv4 and an ipv6 address
+# you can specify which should be chosen using rpc_interface_prefer_ipv6. If false the first ipv4
+# address will be used. If true the first ipv6 address will be used. Defaults to false preferring
+# ipv4. If there is only one address it will be selected regardless of ipv4/ipv6.
+# rpc_interface_prefer_ipv6: false
+
+# port for Thrift to listen for clients on
+rpc_port: 9160
+
+# RPC address to broadcast to drivers and other Cassandra nodes. This cannot
+# be set to 0.0.0.0. If left blank, this will be set to the value of
+# rpc_address. If rpc_address is set to 0.0.0.0, broadcast_rpc_address must
+# be set.
+broadcast_rpc_address: 172.20.0.7
+
+# enable or disable keepalive on rpc/native connections
+rpc_keepalive: true
+
+# Cassandra provides two out-of-the-box options for the RPC Server:
+#
+# sync
+# One thread per thrift connection. For a very large number of clients, memory
+# will be your limiting factor. On a 64 bit JVM, 180KB is the minimum stack size
+# per thread, and that will correspond to your use of virtual memory (but physical memory
+# may be limited depending on use of stack space).
+#
+# hsha
+# Stands for "half synchronous, half asynchronous." All thrift clients are handled
+# asynchronously using a small number of threads that does not vary with the amount
+# of thrift clients (and thus scales well to many clients). The rpc requests are still
+# synchronous (one thread per active request). If hsha is selected then it is essential
+# that rpc_max_threads is changed from the default value of unlimited.
+#
+# The default is sync because on Windows hsha is about 30% slower. On Linux,
+# sync/hsha performance is about the same, with hsha of course using less memory.
+#
+# Alternatively, can provide your own RPC server by providing the fully-qualified class name
+# of an o.a.c.t.TServerFactory that can create an instance of it.
+rpc_server_type: sync
+
+# Uncomment rpc_min|max_thread to set request pool size limits.
+#
+# Regardless of your choice of RPC server (see above), the number of maximum requests in the
+# RPC thread pool dictates how many concurrent requests are possible (but if you are using the sync
+# RPC server, it also dictates the number of clients that can be connected at all).
+#
+# The default is unlimited and thus provides no protection against clients overwhelming the server. You are
+# encouraged to set a maximum that makes sense for you in production, but do keep in mind that
+# rpc_max_threads represents the maximum number of client requests this server may execute concurrently.
+#
+# rpc_min_threads: 16
+# rpc_max_threads: 2048
+
+# uncomment to set socket buffer sizes on rpc connections
+# rpc_send_buff_size_in_bytes:
+# rpc_recv_buff_size_in_bytes:
+
+# Uncomment to set socket buffer size for internode communication
+# Note that when setting this, the buffer size is limited by net.core.wmem_max
+# and when not setting it it is defined by net.ipv4.tcp_wmem
+# See also:
+# /proc/sys/net/core/wmem_max
+# /proc/sys/net/core/rmem_max
+# /proc/sys/net/ipv4/tcp_wmem
+# /proc/sys/net/ipv4/tcp_wmem
+# and 'man tcp'
+# internode_send_buff_size_in_bytes:
+
+# Uncomment to set socket buffer size for internode communication
+# Note that when setting this, the buffer size is limited by net.core.wmem_max
+# and when not setting it it is defined by net.ipv4.tcp_wmem
+# internode_recv_buff_size_in_bytes:
+
+# Frame size for thrift (maximum message length).
+thrift_framed_transport_size_in_mb: 15
+
+# Set to true to have Cassandra create a hard link to each sstable
+# flushed or streamed locally in a backups/ subdirectory of the
+# keyspace data. Removing these links is the operator's
+# responsibility.
+incremental_backups: false
+
+# Whether or not to take a snapshot before each compaction. Be
+# careful using this option, since Cassandra won't clean up the
+# snapshots for you. Mostly useful if you're paranoid when there
+# is a data format change.
+snapshot_before_compaction: false
+
+# Whether or not a snapshot is taken of the data before keyspace truncation
+# or dropping of column families. The STRONGLY advised default of true
+# should be used to provide data safety. If you set this flag to false, you will
+# lose data on truncation or drop.
+auto_snapshot: true
+
+# Granularity of the collation index of rows within a partition.
+# Increase if your rows are large, or if you have a very large
+# number of rows per partition. The competing goals are these:
+#
+# - a smaller granularity means more index entries are generated
+# and looking up rows withing the partition by collation column
+# is faster
+# - but, Cassandra will keep the collation index in memory for hot
+# rows (as part of the key cache), so a larger granularity means
+# you can cache more hot rows
+column_index_size_in_kb: 64
+
+# Per sstable indexed key cache entries (the collation index in memory
+# mentioned above) exceeding this size will not be held on heap.
+# This means that only partition information is held on heap and the
+# index entries are read from disk.
+#
+# Note that this size refers to the size of the
+# serialized index information and not the size of the partition.
+column_index_cache_size_in_kb: 2
+
+# Number of simultaneous compactions to allow, NOT including
+# validation "compactions" for anti-entropy repair. Simultaneous
+# compactions can help preserve read performance in a mixed read/write
+# workload, by mitigating the tendency of small sstables to accumulate
+# during a single long running compactions. The default is usually
+# fine and if you experience problems with compaction running too
+# slowly or too fast, you should look at
+# compaction_throughput_mb_per_sec first.
+#
+# concurrent_compactors defaults to the smaller of (number of disks,
+# number of cores), with a minimum of 2 and a maximum of 8.
+#
+# If your data directories are backed by SSD, you should increase this
+# to the number of cores.
+#concurrent_compactors: 1
+
+# Throttles compaction to the given total throughput across the entire
+# system. The faster you insert data, the faster you need to compact in
+# order to keep the sstable count down, but in general, setting this to
+# 16 to 32 times the rate you are inserting data is more than sufficient.
+# Setting this to 0 disables throttling. Note that this account for all types
+# of compaction, including validation compaction.
+compaction_throughput_mb_per_sec: 16
+
+# When compacting, the replacement sstable(s) can be opened before they
+# are completely written, and used in place of the prior sstables for
+# any range that has been written. This helps to smoothly transfer reads
+# between the sstables, reducing page cache churn and keeping hot rows hot
+sstable_preemptive_open_interval_in_mb: 50
+
+# Throttles all outbound streaming file transfers on this node to the
+# given total throughput in Mbps. This is necessary because Cassandra does
+# mostly sequential IO when streaming data during bootstrap or repair, which
+# can lead to saturating the network connection and degrading rpc performance.
+# When unset, the default is 200 Mbps or 25 MB/s.
+# stream_throughput_outbound_megabits_per_sec: 200
+
+# Throttles all streaming file transfer between the datacenters,
+# this setting allows users to throttle inter dc stream throughput in addition
+# to throttling all network stream traffic as configured with
+# stream_throughput_outbound_megabits_per_sec
+# When unset, the default is 200 Mbps or 25 MB/s
+# inter_dc_stream_throughput_outbound_megabits_per_sec: 200
+
+# How long the coordinator should wait for read operations to complete
+read_request_timeout_in_ms: 50000
+# How long the coordinator should wait for seq or index scans to complete
+range_request_timeout_in_ms: 100000
+# How long the coordinator should wait for writes to complete
+write_request_timeout_in_ms: 20000
+# How long the coordinator should wait for counter writes to complete
+counter_write_request_timeout_in_ms: 50000
+# How long a coordinator should continue to retry a CAS operation
+# that contends with other proposals for the same row
+cas_contention_timeout_in_ms: 10000
+# How long the coordinator should wait for truncates to complete
+# (This can be much longer, because unless auto_snapshot is disabled
+# we need to flush first so we can snapshot before removing the data.)
+truncate_request_timeout_in_ms: 600000
+# The default timeout for other, miscellaneous operations
+request_timeout_in_ms: 100000
+
+# How long before a node logs slow queries. Select queries that take longer than
+# this timeout to execute, will generate an aggregated log message, so that slow queries
+# can be identified. Set this value to zero to disable slow query logging.
+slow_query_log_timeout_in_ms: 500
+
+# Enable operation timeout information exchange between nodes to accurately
+# measure request timeouts. If disabled, replicas will assume that requests
+# were forwarded to them instantly by the coordinator, which means that
+# under overload conditions we will waste that much extra time processing
+# already-timed-out requests.
+#
+# Warning: before enabling this property make sure to ntp is installed
+# and the times are synchronized between the nodes.
+cross_node_timeout: false
+
+# Set keep-alive period for streaming
+# This node will send a keep-alive message periodically with this period.
+# If the node does not receive a keep-alive message from the peer for
+# 2 keep-alive cycles the stream session times out and fail
+# Default value is 300s (5 minutes), which means stalled stream
+# times out in 10 minutes by default
+# streaming_keep_alive_period_in_secs: 300
+
+# phi value that must be reached for a host to be marked down.
+# most users should never need to adjust this.
+# phi_convict_threshold: 8
+
+# endpoint_snitch -- Set this to a class that implements
+# IEndpointSnitch. The snitch has two functions:
+#
+# - it teaches Cassandra enough about your network topology to route
+# requests efficiently
+# - it allows Cassandra to spread replicas around your cluster to avoid
+# correlated failures. It does this by grouping machines into
+# "datacenters" and "racks." Cassandra will do its best not to have
+# more than one replica on the same "rack" (which may not actually
+# be a physical location)
+#
+# CASSANDRA WILL NOT ALLOW YOU TO SWITCH TO AN INCOMPATIBLE SNITCH
+# ONCE DATA IS INSERTED INTO THE CLUSTER. This would cause data loss.
+# This means that if you start with the default SimpleSnitch, which
+# locates every node on "rack1" in "datacenter1", your only options
+# if you need to add another datacenter are GossipingPropertyFileSnitch
+# (and the older PFS). From there, if you want to migrate to an
+# incompatible snitch like Ec2Snitch you can do it by adding new nodes
+# under Ec2Snitch (which will locate them in a new "datacenter") and
+# decommissioning the old ones.
+#
+# Out of the box, Cassandra provides:
+#
+# SimpleSnitch:
+# Treats Strategy order as proximity. This can improve cache
+# locality when disabling read repair. Only appropriate for
+# single-datacenter deployments.
+#
+# GossipingPropertyFileSnitch
+# This should be your go-to snitch for production use. The rack
+# and datacenter for the local node are defined in
+# cassandra-rackdc.properties and propagated to other nodes via
+# gossip. If cassandra-topology.properties exists, it is used as a
+# fallback, allowing migration from the PropertyFileSnitch.
+#
+# PropertyFileSnitch:
+# Proximity is determined by rack and data center, which are
+# explicitly configured in cassandra-topology.properties.
+#
+# Ec2Snitch:
+# Appropriate for EC2 deployments in a single Region. Loads Region
+# and Availability Zone information from the EC2 API. The Region is
+# treated as the datacenter, and the Availability Zone as the rack.
+# Only private IPs are used, so this will not work across multiple
+# Regions.
+#
+# Ec2MultiRegionSnitch:
+# Uses public IPs as broadcast_address to allow cross-region
+# connectivity. (Thus, you should set seed addresses to the public
+# IP as well.) You will need to open the storage_port or
+# ssl_storage_port on the public IP firewall. (For intra-Region
+# traffic, Cassandra will switch to the private IP after
+# establishing a connection.)
+#
+# RackInferringSnitch:
+# Proximity is determined by rack and data center, which are
+# assumed to correspond to the 3rd and 2nd octet of each node's IP
+# address, respectively. Unless this happens to match your
+# deployment conventions, this is best used as an example of
+# writing a custom Snitch class and is provided in that spirit.
+#
+# You can use a custom Snitch by setting this to the full class name
+# of the snitch, which will be assumed to be on your classpath.
+endpoint_snitch: SimpleSnitch
+
+# controls how often to perform the more expensive part of host score
+# calculation
+dynamic_snitch_update_interval_in_ms: 100
+# controls how often to reset all host scores, allowing a bad host to
+# possibly recover
+dynamic_snitch_reset_interval_in_ms: 600000
+# if set greater than zero and read_repair_chance is < 1.0, this will allow
+# 'pinning' of replicas to hosts in order to increase cache capacity.
+# The badness threshold will control how much worse the pinned host has to be
+# before the dynamic snitch will prefer other replicas over it. This is
+# expressed as a double which represents a percentage. Thus, a value of
+# 0.2 means Cassandra would continue to prefer the static snitch values
+# until the pinned host was 20% worse than the fastest.
+dynamic_snitch_badness_threshold: 0.1
+
+# request_scheduler -- Set this to a class that implements
+# RequestScheduler, which will schedule incoming client requests
+# according to the specific policy. This is useful for multi-tenancy
+# with a single Cassandra cluster.
+# NOTE: This is specifically for requests from the client and does
+# not affect inter node communication.
+# org.apache.cassandra.scheduler.NoScheduler - No scheduling takes place
+# org.apache.cassandra.scheduler.RoundRobinScheduler - Round robin of
+# client requests to a node with a separate queue for each
+# request_scheduler_id. The scheduler is further customized by
+# request_scheduler_options as described below.
+request_scheduler: org.apache.cassandra.scheduler.NoScheduler
+
+# Scheduler Options vary based on the type of scheduler
+#
+# NoScheduler
+# Has no options
+#
+# RoundRobin
+# throttle_limit
+# The throttle_limit is the number of in-flight
+# requests per client. Requests beyond
+# that limit are queued up until
+# running requests can complete.
+# The value of 80 here is twice the number of
+# concurrent_reads + concurrent_writes.
+# default_weight
+# default_weight is optional and allows for
+# overriding the default which is 1.
+# weights
+# Weights are optional and will default to 1 or the
+# overridden default_weight. The weight translates into how
+# many requests are handled during each turn of the
+# RoundRobin, based on the scheduler id.
+#
+# request_scheduler_options:
+# throttle_limit: 80
+# default_weight: 5
+# weights:
+# Keyspace1: 1
+# Keyspace2: 5
+
+# request_scheduler_id -- An identifier based on which to perform
+# the request scheduling. Currently the only valid option is keyspace.
+# request_scheduler_id: keyspace
+
+# Enable or disable inter-node encryption
+# JVM defaults for supported SSL socket protocols and cipher suites can
+# be replaced using custom encryption options. This is not recommended
+# unless you have policies in place that dictate certain settings, or
+# need to disable vulnerable ciphers or protocols in case the JVM cannot
+# be updated.
+# FIPS compliant settings can be configured at JVM level and should not
+# involve changing encryption settings here:
+# https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/FIPS.html
+# *NOTE* No custom encryption options are enabled at the moment
+# The available internode options are : all, none, dc, rack
+#
+# If set to dc cassandra will encrypt the traffic between the DCs
+# If set to rack cassandra will encrypt the traffic between the racks
+#
+# The passwords used in these options must match the passwords used when generating
+# the keystore and truststore. For instructions on generating these files, see:
+# http://download.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore
+#
+server_encryption_options:
+ internode_encryption: none
+ keystore: conf/.keystore
+ keystore_password: cassandra
+ truststore: conf/.truststore
+ truststore_password: cassandra
+ # More advanced defaults below:
+ # protocol: TLS
+ # algorithm: SunX509
+ # store_type: JKS
+ # cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA]
+ # require_client_auth: false
+ # require_endpoint_verification: false
+
+# enable or disable client/server encryption.
+client_encryption_options:
+ enabled: false
+ # If enabled and optional is set to true encrypted and unencrypted connections are handled.
+ optional: false
+ keystore: conf/.keystore
+ keystore_password: cassandra
+ # require_client_auth: false
+ # Set trustore and truststore_password if require_client_auth is true
+ # truststore: conf/.truststore
+ # truststore_password: cassandra
+ # More advanced defaults below:
+ # protocol: TLS
+ # algorithm: SunX509
+ # store_type: JKS
+ # cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA]
+
+# internode_compression controls whether traffic between nodes is
+# compressed.
+# Can be:
+#
+# all
+# all traffic is compressed
+#
+# dc
+# traffic between different datacenters is compressed
+#
+# none
+# nothing is compressed.
+internode_compression: dc
+
+# Enable or disable tcp_nodelay for inter-dc communication.
+# Disabling it will result in larger (but fewer) network packets being sent,
+# reducing overhead from the TCP protocol itself, at the cost of increasing
+# latency if you block for cross-datacenter responses.
+inter_dc_tcp_nodelay: false
+
+# TTL for different trace types used during logging of the repair process.
+tracetype_query_ttl: 86400
+tracetype_repair_ttl: 604800
+
+# By default, Cassandra logs GC Pauses greater than 200 ms at INFO level
+# This threshold can be adjusted to minimize logging if necessary
+# gc_log_threshold_in_ms: 200
+
+# If unset, all GC Pauses greater than gc_log_threshold_in_ms will log at
+# INFO level
+# UDFs (user defined functions) are disabled by default.
+# As of Cassandra 3.0 there is a sandbox in place that should prevent execution of evil code.
+enable_user_defined_functions: true
+
+# Enables scripted UDFs (JavaScript UDFs).
+# Java UDFs are always enabled, if enable_user_defined_functions is true.
+# Enable this option to be able to use UDFs with "language javascript" or any custom JSR-223 provider.
+# This option has no effect, if enable_user_defined_functions is false.
+enable_scripted_user_defined_functions: false
+
+# Enables materialized view creation on this node.
+# Materialized views are considered experimental and are not recommended for production use.
+enable_materialized_views: true
+
+# The default Windows kernel timer and scheduling resolution is 15.6ms for power conservation.
+# Lowering this value on Windows can provide much tighter latency and better throughput, however
+# some virtualized environments may see a negative performance impact from changing this setting
+# below their system default. The sysinternals 'clockres' tool can confirm your system's default
+# setting.
+windows_timer_interval: 1
+
+
+# Enables encrypting data at-rest (on disk). Different key providers can be plugged in, but the default reads from
+# a JCE-style keystore. A single keystore can hold multiple keys, but the one referenced by
+# the "key_alias" is the only key that will be used for encrypt opertaions; previously used keys
+# can still (and should!) be in the keystore and will be used on decrypt operations
+# (to handle the case of key rotation).
+#
+# It is strongly recommended to download and install Java Cryptography Extension (JCE)
+# Unlimited Strength Jurisdiction Policy Files for your version of the JDK.
+# (current link: http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html)
+#
+# Currently, only the following file types are supported for transparent data encryption, although
+# more are coming in future cassandra releases: commitlog, hints
+transparent_data_encryption_options:
+ enabled: false
+ chunk_length_kb: 64
+ cipher: AES/CBC/PKCS5Padding
+ key_alias: testing:1
+ # CBC IV length for AES needs to be 16 bytes (which is also the default size)
+ # iv_length: 16
+ key_provider:
+ - class_name: org.apache.cassandra.security.JKSKeyProvider
+ parameters:
+ - keystore: conf/.keystore
+ keystore_password: cassandra
+ store_type: JCEKS
+ key_password: cassandra
+
+
+#####################
+# SAFETY THRESHOLDS #
+#####################
+
+# When executing a scan, within or across a partition, we need to keep the
+# tombstones seen in memory so we can return them to the coordinator, which
+# will use them to make sure other replicas also know about the deleted rows.
+# With workloads that generate a lot of tombstones, this can cause performance
+# problems and even exaust the server heap.
+# (http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets)
+# Adjust the thresholds here if you understand the dangers and want to
+# scan more tombstones anyway. These thresholds may also be adjusted at runtime
+# using the StorageService mbean.
+tombstone_warn_threshold: 1000
+tombstone_failure_threshold: 100000
+
+# Log WARN on any multiple-partition batch size exceeding this value. 5kb per batch by default.
+# Caution should be taken on increasing the size of this threshold as it can lead to node instability.
+batch_size_warn_threshold_in_kb: 5
+
+# Fail any multiple-partition batch exceeding this value. 50kb (10x warn threshold) by default.
+batch_size_fail_threshold_in_kb: 50
+
+# Log WARN on any batches not of type LOGGED than span across more partitions than this limit
+unlogged_batch_across_partitions_warn_threshold: 10
+
+# Log a warning when compacting partitions larger than this value
+compaction_large_partition_warning_threshold_mb: 100
+
+# GC Pauses greater than gc_warn_threshold_in_ms will be logged at WARN level
+# Adjust the threshold based on your application throughput requirement
+# By default, Cassandra logs GC Pauses greater than 200 ms at INFO level
+gc_warn_threshold_in_ms: 1000
+
+# Maximum size of any value in SSTables. Safety measure to detect SSTable corruption
+# early. Any value size larger than this threshold will result into marking an SSTable
+# as corrupted. This should be positive and less than 2048.
+# max_value_size_in_mb: 256
+
+# Back-pressure settings #
+# If enabled, the coordinator will apply the back-pressure strategy specified below to each mutation
+# sent to replicas, with the aim of reducing pressure on overloaded replicas.
+back_pressure_enabled: false
+# The back-pressure strategy applied.
+# The default implementation, RateBasedBackPressure, takes three arguments:
+# high ratio, factor, and flow type, and uses the ratio between incoming mutation responses and outgoing mutation requests.
+# If below high ratio, outgoing mutations are rate limited according to the incoming rate decreased by the given factor;
+# if above high ratio, the rate limiting is increased by the given factor;
+# such factor is usually best configured between 1 and 10, use larger values for a faster recovery
+# at the expense of potentially more dropped mutations;
+# the rate limiting is applied according to the flow type: if FAST, it's rate limited at the speed of the fastest replica,
+# if SLOW at the speed of the slowest one.
+# New strategies can be added. Implementors need to implement org.apache.cassandra.net.BackpressureStrategy and
+# provide a public constructor accepting a Map<String, Object>.
+back_pressure_strategy:
+ - class_name: org.apache.cassandra.net.RateBasedBackPressure
+ parameters:
+ - high_ratio: 0.90
+ factor: 5
+ flow: FAST
+
+# Coalescing Strategies #
+# Coalescing multiples messages turns out to significantly boost message processing throughput (think doubling or more).
+# On bare metal, the floor for packet processing throughput is high enough that many applications won't notice, but in
+# virtualized environments, the point at which an application can be bound by network packet processing can be
+# surprisingly low compared to the throughput of task processing that is possible inside a VM. It's not that bare metal
+# doesn't benefit from coalescing messages, it's that the number of packets a bare metal network interface can process
+# is sufficient for many applications such that no load starvation is experienced even without coalescing.
+# There are other benefits to coalescing network messages that are harder to isolate with a simple metric like messages
+# per second. By coalescing multiple tasks together, a network thread can process multiple messages for the cost of one
+# trip to read from a socket, and all the task submission work can be done at the same time reducing context switching
+# and increasing cache friendliness of network message processing.
+# See CASSANDRA-8692 for details.
+
+# Strategy to use for coalescing messages in OutboundTcpConnection.
+# Can be fixed, movingaverage, timehorizon, disabled (default).
+# You can also specify a subclass of CoalescingStrategies.CoalescingStrategy by name.
+# otc_coalescing_strategy: DISABLED
+
+# How many microseconds to wait for coalescing. For fixed strategy this is the amount of time after the first
+# message is received before it will be sent with any accompanying messages. For moving average this is the
+# maximum amount of time that will be waited as well as the interval at which messages must arrive on average
+# for coalescing to be enabled.
+# otc_coalescing_window_us: 200
+
+# Do not try to coalesce messages if we already got that many messages. This should be more than 2 and less than 128.
+# otc_coalescing_enough_coalesced_messages: 8
+
+# How many milliseconds to wait between two expiration runs on the backlog (queue) of the OutboundTcpConnection.
+# Expiration is done if messages are piling up in the backlog. Droppable messages are expired to free the memory
+# taken by expired messages. The interval should be between 0 and 1000, and in most installations the default value
+# will be appropriate. A smaller value could potentially expire messages slightly sooner at the expense of more CPU
+# time and queue contention while iterating the backlog of messages.
+# An interval of 0 disables any wait time, which is the behavior of former Cassandra versions.
+#
+# otc_backlog_expiration_interval_ms: 200
diff --git a/docker-compose.cassandra.yml b/docker-compose.cassandra.yml
new file mode 100644
--- /dev/null
+++ b/docker-compose.cassandra.yml
@@ -0,0 +1,24 @@
+version: '2'
+
+services:
+ cassandra-seed:
+ # This container starts a Cassandra instance that must be used as the
+ # contact-point for clients. This container will then make the client
+ # discover other cassandra containers.
+ # This container must not be scaled up; scale up th 'cassandra'
+ # container instead.
+ image: cassandra
+ env_file:
+ - ./env/cassandra.env
+ volumes:
+ - "./conf/cassandra.yaml:/etc/cassandra/cassandra.yaml"
+ cassandra:
+ # Additional Cassandra instance(s), which may be scaled up, but not
+ # down. They will automatically connect to 'cassandra-seed', and
+ # 'cassandra-seed' will tell clients to connect to these 'cassandra'
+ # containers to load-balance.
+ image: cassandra
+ volumes:
+ - "./conf/cassandra.yaml:/etc/cassandra/cassandra.yaml"
+ env_file:
+ - ./env/cassandra.env
diff --git a/env/cassandra.env b/env/cassandra.env
new file mode 100644
--- /dev/null
+++ b/env/cassandra.env
@@ -0,0 +1,5 @@
+MAX_HEAP_SIZE=1G
+HEAP_NEWSIZE=100M
+LOCAL_JMX=no
+JVM_EXTRA_OPTS=-Dcom.sun.management.jmxremote.authenticate=false
+

File Metadata

Mime Type
text/plain
Expires
Thu, Jan 23, 2:28 AM (16 h, 29 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3232891

Event Timeline