diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 59eaf94..a173b0e 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,27 +1,28 @@ repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v2.4.0 hooks: - id: trailing-whitespace - id: check-json - id: check-yaml - repo: https://gitlab.com/pycqa/flake8 rev: 3.8.4 hooks: - id: flake8 - repo: https://github.com/codespell-project/codespell rev: v1.16.0 hooks: - id: codespell + args: [-L cas] - repo: https://github.com/PyCQA/isort rev: 5.5.2 hooks: - id: isort - repo: https://github.com/python/black rev: 19.10b0 hooks: - id: black diff --git a/docker/README.rst b/docker/README.rst index f1be4ee..e1335e5 100644 --- a/docker/README.rst +++ b/docker/README.rst @@ -1,666 +1,666 @@ Docker environment ================== ``swh-environment/docker/`` contains Dockerfiles to run a small Software Heritage instance on development machines. The end goal is to smooth the contributors/developers workflow. Focus on coding, not configuring! .. warning:: Running a Software Heritage instance on your machine can consume quite a bit of resources: if you play a bit too hard (e.g., if you try to list all GitHub repositories with the corresponding lister), you may fill your hard drive, and consume a lot of CPU, memory and network bandwidth. Dependencies ------------ This uses docker with docker-compose, so ensure you have a working docker environment and docker-compose is installed. We recommend using the latest version of docker, so please read https://docs.docker.com/install/linux/docker-ce/debian/ for more details on how to install docker on your machine. On a debian system, docker-compose can be installed from Debian repositories:: ~$ sudo apt install docker-compose Quick start ----------- First, change to the docker dir if you aren’t there yet:: ~$ cd swh-environment/docker Then, start containers:: ~/swh-environment/docker$ docker-compose up -d [...] Creating docker_amqp_1 ... done Creating docker_zookeeper_1 ... done Creating docker_kafka_1 ... done Creating docker_flower_1 ... done Creating docker_swh-scheduler-db_1 ... done [...] This will build docker images and run them. Check everything is running fine with:: ~/swh-environment/docker$ docker-compose ps Name Command State Ports ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- docker_amqp_1 docker-entrypoint.sh rabbi ... Up 15671/tcp, 0.0.0.0:5018->15672/tcp, 25672/tcp, 4369/tcp, 5671/tcp, 5672/tcp docker_flower_1 flower --broker=amqp://gue ... Up 0.0.0.0:5555->5555/tcp docker_kafka_1 start-kafka.sh Up 0.0.0.0:9092->9092/tcp docker_swh-deposit-db_1 docker-entrypoint.sh postgres Up 5432/tcp docker_swh-deposit_1 /entrypoint.sh Up 0.0.0.0:5006->5006/tcp [...] The startup of some containers may fail the first time for dependency-related problems. If some containers failed to start, just run the ``docker-compose up -d`` command again. If a container really refuses to start properly, you can check why using the ``docker-compose logs`` command. For example:: ~/swh-environment/docker$ docker-compose logs swh-lister Attaching to docker_swh-lister_1 [...] swh-lister_1 | Processing /src/swh-scheduler swh-lister_1 | Could not install packages due to an EnvironmentError: [('/src/swh-scheduler/.hypothesis/unicodedata/8.0.0/charmap.json.gz', '/tmp/pip-req-build-pm7nsax3/.hypothesis/unicodedata/8.0.0/charmap.json.gz', "[Errno 13] Permission denied: '/src/swh-scheduler/.hypothesis/unicodedata/8.0.0/charmap.json.gz'")] swh-lister_1 | Once all containers are running, you can use the web interface by opening http://localhost:5080/ in your web browser. At this point, the archive is empty and needs to be filled with some content. To do so, you can create tasks that will scrape a forge. For example, to inject the code from the https://0xacab.org gitlab forge:: ~/swh-environment/docker$ docker-compose exec swh-scheduler \ swh scheduler task add list-gitlab-full \ -p oneshot url=https://0xacab.org/api/v4 Created 1 tasks Task 1 Next run: just now (2018-12-19 14:58:49+00:00) Interval: 90 days, 0:00:00 Type: list-gitlab-full Policy: oneshot Args: Keyword args: url=https://0xacab.org/api/v4 This task will scrape the forge’s project list and create subtasks to inject each git repository found there. This will take a bit af time to complete. To increase the speed at which git repositories are imported, you can spawn more ``swh-loader-git`` workers:: ~/swh-environment/docker$ docker-compose exec swh-scheduler \ celery status listers@50ac2185c6c9: OK loader@b164f9055637: OK indexer@33bc6067a5b8: OK vault@c9fef1bbfdc1: OK 4 nodes online. ~/swh-environment/docker$ docker-compose exec swh-scheduler \ celery control pool_grow 3 -d loader@b164f9055637 -> loader@b164f9055637: OK pool will grow ~/swh-environment/docker$ docker-compose exec swh-scheduler \ celery inspect -d loader@b164f9055637 stats | grep prefetch_count "prefetch_count": 4 Now there are 4 workers ingesting git repositories. You can also increase the number of ``swh-loader-git`` containers:: ~/swh-environment/docker$ docker-compose up -d --scale swh-loader=4 [...] Creating docker_swh-loader_2 ... done Creating docker_swh-loader_3 ... done Creating docker_swh-loader_4 ... done Updating the docker image ------------------------- All containers started by ``docker-compose`` are bound to a docker image named ``swh/stack`` including all the software components of Software Heritage. When new versions of these components are released, the docker image will not be automatically updated. In order to update all Software Heritage components to their latest version, the docker image needs to be explicitly rebuilt by issuing the following command from within the ``docker`` directory:: ~/swh-environment/docker$ docker build --no-cache -t swh/stack . Details ------- This runs the following services on their respectively standard ports, all of the following services are configured to communicate with each other: - swh-storage-db: a ``softwareheritage`` instance db that stores the Merkle DAG, - swh-objstorage: Content-addressable object storage, - swh-storage: Abstraction layer over the archive, allowing to access all stored source code artifacts as well as their metadata, - swh-web: the Software Heritage web user interface, - swh-scheduler: the API service as well as 2 utilities, the runner and the listener, - swh-lister: celery workers dedicated to running lister tasks, - swh-loaders: celery workers dedicated to importing/updating source code content (VCS repos, source packages, etc.), - swh-journal: Persistent logger of changes to the archive, with publish-subscribe support. That means you can start doing the ingestion using those services using the same setup described in the getting-started starting directly at https://docs.softwareheritage.org/devel/getting-started.html#step-4-ingest-repositories Exposed Ports ~~~~~~~~~~~~~ Several services have their listening ports exposed on the host: - amqp: 5072 - kafka: 5092 - nginx: 5080 And for SWH services: - scheduler API: 5008 - storage API: 5002 - object storage API: 5003 - indexer API: 5007 - web app: 5004 - deposit app: 5006 Beware that these ports are not the same as the ports used from within the docker network. This means that the same command executed from the host or from a docker container will not use the same urls to access services. For example, to use the ``celery`` utility from the host, you may type:: ~/swh-environment/docker$ CELERY_BROKER_URL=amqp://:5072// celery status loader@61704103668c: OK [...] To run the same command from within a container:: ~/swh-environment/docker$ docker-compose exec swh-scheduler celery status loader@61704103668c: OK [...] Managing tasks -------------- One of the main components of the Software Heritage platform is the task system. These are used to manage everything related to background process, like discovering new git repositories to import, ingesting them, checking a known repository is up to date, etc. The task system is based on Celery but uses a custom database-based scheduler. So when we refer to the term ‘task’, it may designate either a Celery task or a SWH one (ie. the entity in the database). When we refer to simply a “task” in the documentation, it designates the SWH task. When a SWH task is ready to be executed, a Celery task is created to handle the actual SWH task’s job. Note that not all Celery tasks are directly linked to a SWH task (some SWH tasks are implemented using a Celery task that spawns Celery subtasks). A (SWH) task can be ``recurring`` or ``oneshot``. ``oneshot`` tasks are only executed once, whereas ``recurring`` are regularly executed. The scheduling configuration of these recurring tasks can be set via the fields ``current_interval`` and ``priority`` (can be ‘high’, ‘normal’ or ‘low’) of the task database entity. Inserting a new lister task ~~~~~~~~~~~~~~~~~~~~~~~~~~~ To list the content of a source code provider like github or a Debian distribution, you may add a new task for this. This task will (generally) scrape a web page or use a public API to identify the list of published software artefacts (git repos, debian source packages, etc.) Then, for each repository, a new task will be created to ingest this repository and keep it up to date. For example, to add a (one shot) task that will list git repos on the 0xacab.org gitlab instance, one can do (from this git repository):: ~/swh-environment/docker$ docker-compose exec swh-scheduler \ swh scheduler task add list-gitlab-full \ -p oneshot url=https://0xacab.org/api/v4 Created 1 tasks Task 12 Next run: just now (2018-12-19 14:58:49+00:00) Interval: 90 days, 0:00:00 Type: list-gitlab-full Policy: oneshot Args: Keyword args: url=https://0xacab.org/api/v4 This will insert a new task in the scheduler. To list existing tasks for a given task type:: ~/swh-environment/docker$ docker-compose exec swh-scheduler \ swh scheduler task list-pending list-gitlab-full Found 1 list-gitlab-full tasks Task 12 Next run: 2 minutes ago (2018-12-19 14:58:49+00:00) Interval: 90 days, 0:00:00 Type: list-gitlab-full Policy: oneshot Args: Keyword args: url=https://0xacab.org/api/v4 To list all existing task types:: ~/swh-environment/docker$ docker-compose exec swh-scheduler \ swh scheduler task-type list Known task types: load-svn-from-archive: Loading svn repositories from svn dump load-svn: Create dump of a remote svn repository, mount it and load it load-deposit: Loading deposit archive into swh through swh-loader-tar check-deposit: Pre-checking deposit step before loading into swh archive cook-vault-bundle: Cook a Vault bundle load-hg: Loading mercurial repository swh-loader-mercurial load-hg-from-archive: Loading archive mercurial repository swh-loader-mercurial load-git: Update an origin of type git list-github-incremental: Incrementally list GitHub list-github-full: Full update of GitHub repos list list-debian-distribution: List a Debian distribution list-gitlab-incremental: Incrementally list a Gitlab instance list-gitlab-full: Full update of a Gitlab instance's repos list list-pypi: Full pypi lister load-pypi: Load Pypi origin index-mimetype: Mimetype indexer task index-mimetype-for-range: Mimetype Range indexer task index-fossology-license: Fossology license indexer task index-fossology-license-for-range: Fossology license range indexer task index-origin-head: Origin Head indexer task index-revision-metadata: Revision Metadata indexer task index-origin-metadata: Origin Metadata indexer task Monitoring activity ~~~~~~~~~~~~~~~~~~~ You can monitor the workers activity by connecting to the RabbitMQ console on ``http://localhost:5080/rabbitmq`` or the grafana dashboard on ``http://localhost:5080/grafana``. If you cannot see any task being executed, check the logs of the ``swh-scheduler-runner`` service (here is a failure example due to the debian lister task not being properly registered on the swh-scheduler-runner service):: ~/swh-environment/docker$ docker-compose logs --tail=10 swh-scheduler-runner Attaching to docker_swh-scheduler-runner_1 swh-scheduler-runner_1 | "__main__", mod_spec) swh-scheduler-runner_1 | File "/usr/local/lib/python3.7/runpy.py", line 85, in _run_code swh-scheduler-runner_1 | exec(code, run_globals) swh-scheduler-runner_1 | File "/usr/local/lib/python3.7/site-packages/swh/scheduler/celery_backend/runner.py", line 107, in swh-scheduler-runner_1 | run_ready_tasks(main_backend, main_app) swh-scheduler-runner_1 | File "/usr/local/lib/python3.7/site-packages/swh/scheduler/celery_backend/runner.py", line 81, in run_ready_tasks swh-scheduler-runner_1 | task_types[task['type']]['backend_name'] swh-scheduler-runner_1 | File "/usr/local/lib/python3.7/site-packages/celery/app/registry.py", line 21, in __missing__ swh-scheduler-runner_1 | raise self.NotRegistered(key) swh-scheduler-runner_1 | celery.exceptions.NotRegistered: 'swh.lister.debian.tasks.DebianListerTask' Using docker setup development and integration testing ------------------------------------------------------ If you hack the code of one or more archive components with a virtual env based setup as described in the [[https://docs.softwareheritage.org/devel/developer-setup.html|developer setup guide]], you may want to test your modifications in a working Software Heritage instance. The simplest way to achieve this is to use this docker-based environment. If you haven’t followed the [[https://docs.softwareheritage.org/devel/developer-setup.html|developer setup guide]], you must clone the the [swh-environment] repo in your ``swh-environment`` directory:: ~/swh-environment$ git clone https://forge.softwareheritage.org/source/swh-environment.git . Note the ``.`` at the end of this command: we want the git repository to be cloned directly in the ``~/swh-environment`` directory, not in a sub directory. Also note that if you haven’t done it yet and you want to hack the source code of one or more Software Heritage packages, you really should read the [[https://docs.softwareheritage.org/devel/developer-setup.html|developer setup guide]]. From there, we will checkout or update all the swh packages:: ~/swh-environment$ ./bin/update Install a swh package from sources in a container ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is possible to run a docker container with some swh packages installed from sources instead of using the latest published packages from pypi. To do this you must write a docker-compose override file (``docker-compose.override.yml``). An example is given in the ``docker-compose.override.yml.example`` file: .. code:: yaml version: '2' services: swh-objstorage: volumes: - "$HOME/swh-environment/swh-objstorage:/src/swh-objstorage" The file named ``docker-compose.override.yml`` will automatically be loaded by ``docker-compose``. This example shows the simplest case of the ``swh-objstorage`` package: you just have to mount it in the container in ``/src`` and the entrypoint will ensure every swh-\* package found in ``/src/`` is installed (using ``pip install -e`` so you can easily hack your code). If the application you play with has autoreload support, there is no need to restart the impacted container.) Using locally installed swh tools with docker ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In all examples above, we have executed swh commands from within a running container. Now we also have these swh commands locally available in our virtual env, we can use them to interact with swh services running in docker containers. For this, we just need to configure a few environment variables. First, ensure your Software Heritage virtualenv is activated (here, using virtualenvwrapper):: ~$ workon swh (swh) ~/swh-environment$ export SWH_SCHEDULER_URL=http://127.0.0.1:5008/ (swh) ~/swh-environment$ export CELERY_BROKER_URL=amqp://127.0.0.1:5072/ Now we can use the ``celery`` command directly to control the celery system running in the docker environment:: (swh) ~/swh-environment$ celery status vault@c9fef1bbfdc1: OK listers@ba66f18e7d02: OK indexer@cb14c33cbbfb: OK loader@61704103668c: OK 4 nodes online. (swh) ~/swh-environment$ celery control -d loader@61704103668c pool_grow 3 And we can use the ``swh-scheduler`` command all the same:: (swh) ~/swh-environment$ swh scheduler task-type list Known task types: index-fossology-license: Fossology license indexer task index-mimetype: Mimetype indexer task [...] Make your life a bit easier ~~~~~~~~~~~~~~~~~~~~~~~~~~~ When you use virtualenvwrapper, you can add postactivation commands:: (swh) ~/swh-environment$ cat >>$VIRTUAL_ENV/bin/postactivate <<'EOF' # unfortunately, the interface cmd for the click autocompletion # depends on the shell # https://click.palletsprojects.com/en/7.x/bashcomplete/#activation shell=$(basename $SHELL) case "$shell" in "zsh") autocomplete_cmd=source_zsh ;; *) autocomplete_cmd=source ;; esac eval "$(_SWH_COMPLETE=$autocomplete_cmd swh)" export SWH_SCHEDULER_URL=http://127.0.0.1:5008/ export CELERY_BROKER_URL=amqp://127.0.0.1:5072/ export COMPOSE_FILE=~/swh-environment/docker/docker-compose.yml:~/swh-environment/docker/docker-compose.override.yml alias doco=docker-compose EOF This postactivate script does: - install a shell completion handler for the swh-scheduler command, - preset a bunch of environment variables - ``SWH_SCHEDULER_URL`` so that you can just run ``swh scheduler`` against the scheduler API instance running in docker, without having to specify the endpoint URL, - ``CELERY_BROKER`` so you can execute the ``celery`` tool (without cli options) against the rabbitmq server running in the docker environment, - ``COMPOSE_FILE`` so you can run ``docker-compose`` from everywhere, - create an alias ``doco`` for ``docker-compose`` because this is way too long to type, So now you can easily: - Start the SWH platform:: (swh) ~/swh-environment$ doco up -d [...] - Check celery:: (swh) ~/swh-environment$ celery status listers@50ac2185c6c9: OK loader@b164f9055637: OK indexer@33bc6067a5b8: OK - List task-types:: (swh) ~/swh-environment$ swh scheduler task-type list [...] - Get more info on a task type:: (swh) ~/swh-environment$ swh scheduler task-type list -v -t load-hg Known task types: load-hg: swh.loader.mercurial.tasks.LoadMercurial Loading mercurial repository swh-loader-mercurial interval: 1 day, 0:00:00 [1 day, 0:00:00, 1 day, 0:00:00] backoff_factor: 1.0 max_queue_length: 1000 num_retries: None retry_delay: None - Add a new task:: (swh) ~/swh-environment$ swh scheduler task add load-hg \ origin_url=https://hg.logilab.org/master/cubicweb Created 1 tasks Task 1 Next run: just now (2019-02-06 12:36:58+00:00) Interval: 1 day, 0:00:00 Type: load-hg Policy: recurring Args: Keyword args: origin_url: https://hg.logilab.org/master/cubicweb - Respawn a task:: (swh) ~/swh-environment$ swh scheduler task respawn 1 Data persistence for a development setting ------------------------------------------ The default ``docker-compose.yml`` configuration is not geared towards data persistence, but application testing. Volumes defined in associated images are anonymous and may get either unused or removed on the next ``docker-compose up``. One way to make sure these volumes persist is to use named volumes. The volumes may be defined as follows in a ``docker-compose.override.yml``. Note that volume definitions are merged with other compose files based on destination path. :: services: swh-storage-db: volumes: - "swh_storage_data:/var/lib/postgresql/data" swh-objstorage: volumes: - "swh_objstorage_data:/srv/softwareheritage/objects" volumes: swh_storage_data: swh_objstorage_data: This way, ``docker-compose down`` without the ``-v`` flag will not remove those volumes and data will persist. Starting a kafka-powered mirror of the storage ---------------------------------------------- This repo comes with an optional ``docker-compose.storage-mirror.yml`` docker compose file that can be used to test the kafka-powered mirror -mecanism for the main storage. +mechanism for the main storage. This can be used like:: ~/swh-environment/docker$ docker-compose -f docker-compose.yml -f docker-compose.storage-mirror.yml up -d [...] Compared to the original compose file, this will: - overrides the swh-storage service to activate the kafka direct writer - on swh.journal.objects prefixed topics using thw swh.storage.master + on swh.journal.objects prefixed topics using the swh.storage.master ID, - overrides the swh-web service to make it use the mirror instead of the master storage, - starts a db for the mirror, - starts a storage service based on this db, - starts a replayer service that runs the process that listen to kafka to keeps the mirror in sync. When using it, you will have a setup in which the master storage is used by workers and most other services, whereas the storage mirror will be used to by the web application and should be kept in sync with the master storage by kafka. Note that the object storage is not replicated here, only the graph storage. Starting the backfiller ----------------------- Reading from the storage the objects from within range [start-object, end-object] to the kafka topics. :: (swh)$ docker-compose \ -f docker-compose.yml \ -f docker-compose.storage-mirror.yml \ -f docker-compose.storage-mirror.override.yml \ run \ swh-journal-backfiller \ snapshot \ --start-object 000000 \ --end-object 000001 \ --dry-run Using Sentry ------------ All entrypoints to SWH code (CLI, gunicorn, celery, …) are, or should -be, intrumented using Sentry. By default this is disabled, but if you +be, instrumented using Sentry. By default this is disabled, but if you run your own Sentry instance, you can use it. To do so, you must get a DSN from your Sentry instance, and set it as the value of ``SWH_SENTRY_DSN`` in the file ``env/common_python.env``. You may also set it per-service in the ``environment`` section of each services in ``docker-compose.override.yml``. Caveats ------- Running a lister task can lead to a lot of loading tasks, which can fill your hard drive pretty fast. Make sure to monitor your available storage space regularly when playing with this stack. Also, a few containers (``swh-storage``, ``swh-xxx-db``) use a volume for storing the blobs or the database files. With the default configuration provided in the ``docker-compose.yml`` file, these volumes -are not persistant. So removing the containers will delete the volumes! +are not persistent. So removing the containers will delete the volumes! Also note that for the ``swh-objstorage``, since the volume can be pretty big, the remove operation can be quite long (several minutes is not uncommon), which may mess a bit with the ``docker-compose`` command. If you have an error message like: Error response from daemon: removal of container 928de3110381 is already in progress it means that you need to wait for this process to finish before being able to (re)start your docker stack again. diff --git a/docker/conf/cassandra.yaml b/docker/conf/cassandra.yaml index 78937eb..d91558a 100644 --- a/docker/conf/cassandra.yaml +++ b/docker/conf/cassandra.yaml @@ -1,1242 +1,1242 @@ # Cassandra storage config YAML # NOTE: # See http://wiki.apache.org/cassandra/StorageConfiguration for # full explanations of configuration directives # /NOTE # The name of the cluster. This is mainly used to prevent machines in # one logical cluster from joining another. cluster_name: 'Test Cluster' # This defines the number of tokens randomly assigned to this node on the ring # The more tokens, relative to other nodes, the larger the proportion of data # that this node will store. You probably want all nodes to have the same number # of tokens assuming they have equal hardware capability. # # If you leave this unspecified, Cassandra will use the default of 1 token for legacy compatibility, # and will use the initial_token as described below. # # Specifying initial_token will override this setting on the node's initial start, # on subsequent starts, this setting will apply even if initial token is set. # # If you already have a cluster with 1 token per node, and wish to migrate to # multiple tokens per node, see http://wiki.apache.org/cassandra/Operations num_tokens: 256 # Triggers automatic allocation of num_tokens tokens for this node. The allocation # algorithm attempts to choose tokens in a way that optimizes replicated load over # the nodes in the datacenter for the replication strategy used by the specified # keyspace. # # The load assigned to each node will be close to proportional to its number of # vnodes. # # Only supported with the Murmur3Partitioner. # allocate_tokens_for_keyspace: KEYSPACE # initial_token allows you to specify tokens manually. While you can use it with # vnodes (num_tokens > 1, above) -- in which case you should provide a # comma-separated list -- it's primarily used when adding nodes to legacy clusters # that do not have vnodes enabled. # initial_token: # See http://wiki.apache.org/cassandra/HintedHandoff # May either be "true" or "false" to enable globally hinted_handoff_enabled: true # When hinted_handoff_enabled is true, a black list of data centers that will not # perform hinted handoff # hinted_handoff_disabled_datacenters: # - DC1 # - DC2 # this defines the maximum amount of time a dead host will have hints # generated. After it has been dead this long, new hints for it will not be # created until it has been seen alive and gone down again. max_hint_window_in_ms: 10800000 # 3 hours # Maximum throttle in KBs per second, per delivery thread. This will be # reduced proportionally to the number of nodes in the cluster. (If there # are two nodes in the cluster, each delivery thread will use the maximum # rate; if there are three, each will throttle to half of the maximum, # since we expect two nodes to be delivering hints simultaneously.) hinted_handoff_throttle_in_kb: 1024 # Number of threads with which to deliver hints; # Consider increasing this number when you have multi-dc deployments, since # cross-dc handoff tends to be slower max_hints_delivery_threads: 2 # Directory where Cassandra should store hints. # If not set, the default directory is $CASSANDRA_HOME/data/hints. # hints_directory: /var/lib/cassandra/hints hints_directory: /var/lib/cassandra/hints # How often hints should be flushed from the internal buffers to disk. # Will *not* trigger fsync. hints_flush_period_in_ms: 10000 # Maximum size for a single hints file, in megabytes. max_hints_file_size_in_mb: 128 # Compression to apply to the hint files. If omitted, hints files # will be written uncompressed. LZ4, Snappy, and Deflate compressors # are supported. #hints_compression: # - class_name: LZ4Compressor # parameters: # - # Maximum throttle in KBs per second, total. This will be # reduced proportionally to the number of nodes in the cluster. batchlog_replay_throttle_in_kb: 1024 # Authentication backend, implementing IAuthenticator; used to identify users # Out of the box, Cassandra provides org.apache.cassandra.auth.{AllowAllAuthenticator, # PasswordAuthenticator}. # # - AllowAllAuthenticator performs no checks - set it to disable authentication. # - PasswordAuthenticator relies on username/password pairs to authenticate # users. It keeps usernames and hashed passwords in system_auth.roles table. # Please increase system_auth keyspace replication factor if you use this authenticator. # If using PasswordAuthenticator, CassandraRoleManager must also be used (see below) authenticator: AllowAllAuthenticator # Authorization backend, implementing IAuthorizer; used to limit access/provide permissions # Out of the box, Cassandra provides org.apache.cassandra.auth.{AllowAllAuthorizer, # CassandraAuthorizer}. # # - AllowAllAuthorizer allows any action to any user - set it to disable authorization. # - CassandraAuthorizer stores permissions in system_auth.role_permissions table. Please # increase system_auth keyspace replication factor if you use this authorizer. authorizer: AllowAllAuthorizer # Part of the Authentication & Authorization backend, implementing IRoleManager; used # to maintain grants and memberships between roles. # Out of the box, Cassandra provides org.apache.cassandra.auth.CassandraRoleManager, # which stores role information in the system_auth keyspace. Most functions of the # IRoleManager require an authenticated login, so unless the configured IAuthenticator # actually implements authentication, most of this functionality will be unavailable. # # - CassandraRoleManager stores role data in the system_auth keyspace. Please # increase system_auth keyspace replication factor if you use this role manager. role_manager: CassandraRoleManager # Validity period for roles cache (fetching granted roles can be an expensive # operation depending on the role manager, CassandraRoleManager is one example) # Granted roles are cached for authenticated sessions in AuthenticatedUser and # after the period specified here, become eligible for (async) reload. # Defaults to 2000, set to 0 to disable caching entirely. # Will be disabled automatically for AllowAllAuthenticator. roles_validity_in_ms: 2000 # Refresh interval for roles cache (if enabled). # After this interval, cache entries become eligible for refresh. Upon next # access, an async reload is scheduled and the old value returned until it # completes. If roles_validity_in_ms is non-zero, then this must be # also. # Defaults to the same value as roles_validity_in_ms. # roles_update_interval_in_ms: 2000 # Validity period for permissions cache (fetching permissions can be an # expensive operation depending on the authorizer, CassandraAuthorizer is # one example). Defaults to 2000, set to 0 to disable. # Will be disabled automatically for AllowAllAuthorizer. permissions_validity_in_ms: 2000 # Refresh interval for permissions cache (if enabled). # After this interval, cache entries become eligible for refresh. Upon next # access, an async reload is scheduled and the old value returned until it # completes. If permissions_validity_in_ms is non-zero, then this must be # also. # Defaults to the same value as permissions_validity_in_ms. # permissions_update_interval_in_ms: 2000 # Validity period for credentials cache. This cache is tightly coupled to # the provided PasswordAuthenticator implementation of IAuthenticator. If # another IAuthenticator implementation is configured, this cache will not # be automatically used and so the following settings will have no effect. # Please note, credentials are cached in their encrypted form, so while # activating this cache may reduce the number of queries made to the # underlying table, it may not bring a significant reduction in the # latency of individual authentication attempts. # Defaults to 2000, set to 0 to disable credentials caching. credentials_validity_in_ms: 2000 # Refresh interval for credentials cache (if enabled). # After this interval, cache entries become eligible for refresh. Upon next # access, an async reload is scheduled and the old value returned until it # completes. If credentials_validity_in_ms is non-zero, then this must be # also. # Defaults to the same value as credentials_validity_in_ms. # credentials_update_interval_in_ms: 2000 # The partitioner is responsible for distributing groups of rows (by # partition key) across nodes in the cluster. You should leave this # alone for new clusters. The partitioner can NOT be changed without # reloading all data, so when upgrading you should set this to the # same partitioner you were already using. # # Besides Murmur3Partitioner, partitioners included for backwards # compatibility include RandomPartitioner, ByteOrderedPartitioner, and # OrderPreservingPartitioner. # partitioner: org.apache.cassandra.dht.Murmur3Partitioner # Directories where Cassandra should store data on disk. Cassandra # will spread data evenly across them, subject to the granularity of # the configured compaction strategy. # If not set, the default directory is $CASSANDRA_HOME/data/data. data_file_directories: - /var/lib/cassandra/data # commit log. when running on magnetic HDD, this should be a # separate spindle than the data directories. # If not set, the default directory is $CASSANDRA_HOME/data/commitlog. commitlog_directory: /var/lib/cassandra/commitlog # Enable / disable CDC functionality on a per-node basis. This modifies the logic used # for write path allocation rejection (standard: never reject. cdc: reject Mutation # containing a CDC-enabled table if at space limit in cdc_raw_directory). cdc_enabled: false # CommitLogSegments are moved to this directory on flush if cdc_enabled: true and the # segment contains mutations for a CDC-enabled table. This should be placed on a # separate spindle than the data directories. If not set, the default directory is # $CASSANDRA_HOME/data/cdc_raw. # cdc_raw_directory: /var/lib/cassandra/cdc_raw # Policy for data disk failures: # # die # shut down gossip and client transports and kill the JVM for any fs errors or # single-sstable errors, so the node can be replaced. # # stop_paranoid # shut down gossip and client transports even for single-sstable errors, # kill the JVM for errors during startup. # # stop # shut down gossip and client transports, leaving the node effectively dead, but # can still be inspected via JMX, kill the JVM for errors during startup. # # best_effort # stop using the failed disk and respond to requests based on # remaining available sstables. This means you WILL see obsolete # data at CL.ONE! # # ignore # ignore fatal errors and let requests fail, as in pre-1.2 Cassandra disk_failure_policy: stop # Policy for commit disk failures: # # die # shut down gossip and Thrift and kill the JVM, so the node can be replaced. # # stop # shut down gossip and Thrift, leaving the node effectively dead, but # can still be inspected via JMX. # # stop_commit # shutdown the commit log, letting writes collect but # continuing to service reads, as in pre-2.0.5 Cassandra # # ignore # ignore fatal errors and let the batches fail commit_failure_policy: stop # Maximum size of the native protocol prepared statement cache # # Valid values are either "auto" (omitting the value) or a value greater 0. # -# Note that specifying a too large value will result in long running GCs and possbily +# Note that specifying a too large value will result in long running GCs and possibly # out-of-memory errors. Keep the value at a small fraction of the heap. # # If you constantly see "prepared statements discarded in the last minute because # cache limit reached" messages, the first step is to investigate the root cause # of these messages and check whether prepared statements are used correctly - # i.e. use bind markers for variable parts. # # Do only change the default value, if you really have more prepared statements than -# fit in the cache. In most cases it is not neccessary to change this value. +# fit in the cache. In most cases it is not necessary to change this value. # Constantly re-preparing statements is a performance penalty. # # Default value ("auto") is 1/256th of the heap or 10MB, whichever is greater prepared_statements_cache_size_mb: # Maximum size of the Thrift prepared statement cache # # If you do not use Thrift at all, it is safe to leave this value at "auto". # # See description of 'prepared_statements_cache_size_mb' above for more information. # # Default value ("auto") is 1/256th of the heap or 10MB, whichever is greater thrift_prepared_statements_cache_size_mb: # Maximum size of the key cache in memory. # # Each key cache hit saves 1 seek and each row cache hit saves 2 seeks at the # minimum, sometimes more. The key cache is fairly tiny for the amount of # time it saves, so it's worthwhile to use it at large numbers. # The row cache saves even more time, but must contain the entire row, # so it is extremely space-intensive. It's best to only use the # row cache if you have hot rows or static rows. # # NOTE: if you reduce the size, you may not get you hottest keys loaded on startup. # # Default value is empty to make it "auto" (min(5% of Heap (in MB), 100MB)). Set to 0 to disable key cache. key_cache_size_in_mb: 1024 # Duration in seconds after which Cassandra should # save the key cache. Caches are saved to saved_caches_directory as # specified in this configuration file. # # Saved caches greatly improve cold-start speeds, and is relatively cheap in # terms of I/O for the key cache. Row cache saving is much more expensive and # has limited use. # # Default is 14400 or 4 hours. key_cache_save_period: 14400 # Number of keys from the key cache to save # Disabled by default, meaning all keys are going to be saved # key_cache_keys_to_save: 100 # Row cache implementation class name. Available implementations: # # org.apache.cassandra.cache.OHCProvider # Fully off-heap row cache implementation (default). # # org.apache.cassandra.cache.SerializingCacheProvider # This is the row cache implementation availabile # in previous releases of Cassandra. # row_cache_class_name: org.apache.cassandra.cache.OHCProvider # Maximum size of the row cache in memory. # Please note that OHC cache implementation requires some additional off-heap memory to manage # the map structures and some in-flight memory during operations before/after cache entries can be # accounted against the cache capacity. This overhead is usually small compared to the whole capacity. # Do not specify more memory that the system can afford in the worst usual situation and leave some # headroom for OS block level cache. Do never allow your system to swap. # # Default value is 0, to disable row caching. row_cache_size_in_mb: 0 # Duration in seconds after which Cassandra should save the row cache. # Caches are saved to saved_caches_directory as specified in this configuration file. # # Saved caches greatly improve cold-start speeds, and is relatively cheap in # terms of I/O for the key cache. Row cache saving is much more expensive and # has limited use. # # Default is 0 to disable saving the row cache. row_cache_save_period: 0 # Number of keys from the row cache to save. # Specify 0 (which is the default), meaning all keys are going to be saved # row_cache_keys_to_save: 100 # Maximum size of the counter cache in memory. # # Counter cache helps to reduce counter locks' contention for hot counter cells. # In case of RF = 1 a counter cache hit will cause Cassandra to skip the read before # write entirely. With RF > 1 a counter cache hit will still help to reduce the duration # of the lock hold, helping with hot counter cell updates, but will not allow skipping # the read entirely. Only the local (clock, count) tuple of a counter cell is kept # in memory, not the whole counter, so it's relatively cheap. # # NOTE: if you reduce the size, you may not get you hottest keys loaded on startup. # # Default value is empty to make it "auto" (min(2.5% of Heap (in MB), 50MB)). Set to 0 to disable counter cache. # NOTE: if you perform counter deletes and rely on low gcgs, you should disable the counter cache. counter_cache_size_in_mb: # Duration in seconds after which Cassandra should # save the counter cache (keys only). Caches are saved to saved_caches_directory as # specified in this configuration file. # # Default is 7200 or 2 hours. counter_cache_save_period: 7200 # Number of keys from the counter cache to save # Disabled by default, meaning all keys are going to be saved # counter_cache_keys_to_save: 100 # saved caches # If not set, the default directory is $CASSANDRA_HOME/data/saved_caches. saved_caches_directory: /var/lib/cassandra/saved_caches # commitlog_sync may be either "periodic" or "batch." # # When in batch mode, Cassandra won't ack writes until the commit log # has been fsynced to disk. It will wait # commitlog_sync_batch_window_in_ms milliseconds between fsyncs. # This window should be kept short because the writer threads will # be unable to do extra work while waiting. (You may need to increase # concurrent_writes for the same reason.) # # commitlog_sync: batch # commitlog_sync_batch_window_in_ms: 2 # # the other option is "periodic" where writes may be acked immediately # and the CommitLog is simply synced every commitlog_sync_period_in_ms # milliseconds. commitlog_sync: periodic commitlog_sync_period_in_ms: 10000 # The size of the individual commitlog file segments. A commitlog # segment may be archived, deleted, or recycled once all the data # in it (potentially from each columnfamily in the system) has been # flushed to sstables. # # The default size is 32, which is almost always fine, but if you are # archiving commitlog segments (see commitlog_archiving.properties), # then you probably want a finer granularity of archiving; 8 or 16 MB # is reasonable. # Max mutation size is also configurable via max_mutation_size_in_kb setting in # cassandra.yaml. The default is half the size commitlog_segment_size_in_mb * 1024. # This should be positive and less than 2048. # # NOTE: If max_mutation_size_in_kb is set explicitly then commitlog_segment_size_in_mb must # be set to at least twice the size of max_mutation_size_in_kb / 1024 # commitlog_segment_size_in_mb: 512 # This is much bigger than the default (32), but the segment size must be # larger than the largest row we want to write. And we have rows as large # as 300MB, so... # Compression to apply to the commit log. If omitted, the commit log # will be written uncompressed. LZ4, Snappy, and Deflate compressors # are supported. # commitlog_compression: # - class_name: LZ4Compressor # parameters: # - # any class that implements the SeedProvider interface and has a # constructor that takes a Map of parameters will do. seed_provider: # Addresses of hosts that are deemed contact points. # Cassandra nodes use this list of hosts to find each other and learn # the topology of the ring. You must change this if you are running # multiple nodes! - class_name: org.apache.cassandra.locator.SimpleSeedProvider parameters: # seeds is actually a comma-delimited list of addresses. # Ex: ",," - seeds: # For workloads with more data than can fit in memory, Cassandra's # bottleneck will be reads that need to fetch data from # disk. "concurrent_reads" should be set to (16 * number_of_drives) in # order to allow the operations to enqueue low enough in the stack # that the OS and drives can reorder them. Same applies to # "concurrent_counter_writes", since counter writes read the current # values before incrementing and writing them back. # # On the other hand, since writes are almost never IO bound, the ideal # number of "concurrent_writes" is dependent on the number of cores in # your system; (8 * number_of_cores) is a good rule of thumb. concurrent_reads: 32 concurrent_writes: 32 concurrent_counter_writes: 32 # For materialized view writes, as there is a read involved, so this should # be limited by the less of concurrent reads or concurrent writes. concurrent_materialized_view_writes: 32 # Maximum memory to use for sstable chunk cache and buffer pooling. # 32MB of this are reserved for pooling buffers, the rest is used as an # cache that holds uncompressed sstable chunks. # Defaults to the smaller of 1/4 of heap or 512MB. This pool is allocated off-heap, # so is in addition to the memory allocated for heap. The cache also has on-heap # overhead which is roughly 128 bytes per chunk (i.e. 0.2% of the reserved size # if the default 64k chunk size is used). # Memory is only allocated when needed. # file_cache_size_in_mb: 512 # Flag indicating whether to allocate on or off heap when the sstable buffer # pool is exhausted, that is when it has exceeded the maximum memory # file_cache_size_in_mb, beyond which it will not cache buffers but allocate on request. # buffer_pool_use_heap_if_exhausted: true # The strategy for optimizing disk read # Possible values are: # ssd (for solid state disks, the default) # spinning (for spinning disks) # disk_optimization_strategy: ssd # Total permitted memory to use for memtables. Cassandra will stop # accepting writes when the limit is exceeded until a flush completes, # and will trigger a flush based on memtable_cleanup_threshold # If omitted, Cassandra will set both to 1/4 the size of the heap. # memtable_heap_space_in_mb: 2048 # memtable_offheap_space_in_mb: 2048 # memtable_cleanup_threshold is deprecated. The default calculation # is the only reasonable choice. See the comments on memtable_flush_writers # for more information. # # Ratio of occupied non-flushing memtable size to total permitted size # that will trigger a flush of the largest memtable. Larger mct will # mean larger flushes and hence less compaction, but also less concurrent # flush activity which can make it difficult to keep your disks fed # under heavy write load. # # memtable_cleanup_threshold defaults to 1 / (memtable_flush_writers + 1) # memtable_cleanup_threshold: 0.11 # Specify the way Cassandra allocates and manages memtable memory. # Options are: # # heap_buffers # on heap nio buffers # # offheap_buffers # off heap (direct) nio buffers # # offheap_objects # off heap objects memtable_allocation_type: heap_buffers # Total space to use for commit logs on disk. # # If space gets above this value, Cassandra will flush every dirty CF # in the oldest segment and remove it. So a small total commitlog space # will tend to cause more flush activity on less-active columnfamilies. # # The default value is the smaller of 8192, and 1/4 of the total space # of the commitlog volume. # # commitlog_total_space_in_mb: 8192 # This sets the number of memtable flush writer threads per disk # as well as the total number of memtables that can be flushed concurrently. # These are generally a combination of compute and IO bound. # # Memtable flushing is more CPU efficient than memtable ingest and a single thread # can keep up with the ingest rate of a whole server on a single fast disk # until it temporarily becomes IO bound under contention typically with compaction. # At that point you need multiple flush threads. At some point in the future # it may become CPU bound all the time. # # You can tell if flushing is falling behind using the MemtablePool.BlockedOnAllocation # metric which should be 0, but will be non-zero if threads are blocked waiting on flushing # to free memory. # # memtable_flush_writers defaults to two for a single data directory. # This means that two memtables can be flushed concurrently to the single data directory. # If you have multiple data directories the default is one memtable flushing at a time # but the flush will use a thread per data directory so you will get two or more writers. # # Two is generally enough to flush on a fast disk [array] mounted as a single data directory. # Adding more flush writers will result in smaller more frequent flushes that introduce more # compaction overhead. # # There is a direct tradeoff between number of memtables that can be flushed concurrently # and flush size and frequency. More is not better you just need enough flush writers # to never stall waiting for flushing to free memory. # #memtable_flush_writers: 2 # Total space to use for change-data-capture logs on disk. # # If space gets above this value, Cassandra will throw WriteTimeoutException # on Mutations including tables with CDC enabled. A CDCCompactor is responsible # for parsing the raw CDC logs and deleting them when parsing is completed. # # The default value is the min of 4096 mb and 1/8th of the total space # of the drive where cdc_raw_directory resides. # cdc_total_space_in_mb: 4096 # When we hit our cdc_raw limit and the CDCCompactor is either running behind # or experiencing backpressure, we check at the following interval to see if any # new space for cdc-tracked tables has been made available. Default to 250ms # cdc_free_space_check_interval_ms: 250 # A fixed memory pool size in MB for for SSTable index summaries. If left # empty, this will default to 5% of the heap size. If the memory usage of # all index summaries exceeds this limit, SSTables with low read rates will # shrink their index summaries in order to meet this limit. However, this # is a best-effort process. In extreme conditions Cassandra may need to use # more than this amount of memory. index_summary_capacity_in_mb: # How frequently index summaries should be resampled. This is done # periodically to redistribute memory from the fixed-size pool to sstables # proportional their recent read rates. Setting to -1 will disable this # process, leaving existing index summaries at their current sampling level. index_summary_resize_interval_in_minutes: 60 # Whether to, when doing sequential writing, fsync() at intervals in # order to force the operating system to flush the dirty # buffers. Enable this to avoid sudden dirty buffer flushing from # impacting read latencies. Almost always a good idea on SSDs; not # necessarily on platters. trickle_fsync: false trickle_fsync_interval_in_kb: 10240 # TCP port, for commands and data # For security reasons, you should not expose this port to the internet. Firewall it if needed. storage_port: 7000 # SSL port, for encrypted communication. Unused unless enabled in # encryption_options # For security reasons, you should not expose this port to the internet. Firewall it if needed. ssl_storage_port: 7001 # Address or interface to bind to and tell other Cassandra nodes to connect to. # You _must_ change this if you want multiple nodes to be able to communicate! # # Set listen_address OR listen_interface, not both. # # Leaving it blank leaves it up to InetAddress.getLocalHost(). This # will always do the Right Thing _if_ the node is properly configured # (hostname, name resolution, etc), and the Right Thing is to use the # address associated with the hostname (it might not be). # # Setting listen_address to 0.0.0.0 is always wrong. # listen_address: # Set listen_address OR listen_interface, not both. Interfaces must correspond # to a single address, IP aliasing is not supported. # listen_interface: eth0 # If you choose to specify the interface by name and the interface has an ipv4 and an ipv6 address # you can specify which should be chosen using listen_interface_prefer_ipv6. If false the first ipv4 # address will be used. If true the first ipv6 address will be used. Defaults to false preferring # ipv4. If there is only one address it will be selected regardless of ipv4/ipv6. # listen_interface_prefer_ipv6: false # Address to broadcast to other Cassandra nodes # Leaving this blank will set it to the same value as listen_address broadcast_address: # When using multiple physical network interfaces, set this # to true to listen on broadcast_address in addition to # the listen_address, allowing nodes to communicate in both # interfaces. # Ignore this property if the network configuration automatically # routes between the public and private networks such as EC2. # listen_on_broadcast_address: false # Internode authentication backend, implementing IInternodeAuthenticator; # used to allow/disallow connections from peer nodes. # internode_authenticator: org.apache.cassandra.auth.AllowAllInternodeAuthenticator # Whether to start the native transport server. # Please note that the address on which the native transport is bound is the # same as the rpc_address. The port however is different and specified below. start_native_transport: true # port for the CQL native transport to listen for clients on # For security reasons, you should not expose this port to the internet. Firewall it if needed. native_transport_port: 9042 # Enabling native transport encryption in client_encryption_options allows you to either use # encryption for the standard port or to use a dedicated, additional port along with the unencrypted # standard native_transport_port. # Enabling client encryption and keeping native_transport_port_ssl disabled will use encryption # for native_transport_port. Setting native_transport_port_ssl to a different value # from native_transport_port will use encryption for native_transport_port_ssl while # keeping native_transport_port unencrypted. # native_transport_port_ssl: 9142 # The maximum threads for handling requests when the native transport is used. # This is similar to rpc_max_threads though the default differs slightly (and # there is no native_transport_min_threads, idle threads will always be stopped # after 30 seconds). # native_transport_max_threads: 128 # # The maximum size of allowed frame. Frame (requests) larger than this will # be rejected as invalid. The default is 256MB. If you're changing this parameter, # you may want to adjust max_value_size_in_mb accordingly. This should be positive and less than 2048. # native_transport_max_frame_size_in_mb: 256 # The maximum number of concurrent client connections. # The default is -1, which means unlimited. # native_transport_max_concurrent_connections: -1 # The maximum number of concurrent client connections per source ip. # The default is -1, which means unlimited. # native_transport_max_concurrent_connections_per_ip: -1 # Whether to start the thrift rpc server. start_rpc: false # The address or interface to bind the Thrift RPC service and native transport # server to. # # Set rpc_address OR rpc_interface, not both. # # Leaving rpc_address blank has the same effect as on listen_address # (i.e. it will be based on the configured hostname of the node). # # Note that unlike listen_address, you can specify 0.0.0.0, but you must also # set broadcast_rpc_address to a value other than 0.0.0.0. # # For security reasons, you should not expose this port to the internet. Firewall it if needed. rpc_address: 0.0.0.0 # Set rpc_address OR rpc_interface, not both. Interfaces must correspond # to a single address, IP aliasing is not supported. # rpc_interface: eth1 # If you choose to specify the interface by name and the interface has an ipv4 and an ipv6 address # you can specify which should be chosen using rpc_interface_prefer_ipv6. If false the first ipv4 # address will be used. If true the first ipv6 address will be used. Defaults to false preferring # ipv4. If there is only one address it will be selected regardless of ipv4/ipv6. # rpc_interface_prefer_ipv6: false # port for Thrift to listen for clients on rpc_port: 9160 # RPC address to broadcast to drivers and other Cassandra nodes. This cannot # be set to 0.0.0.0. If left blank, this will be set to the value of # rpc_address. If rpc_address is set to 0.0.0.0, broadcast_rpc_address must # be set. broadcast_rpc_address: # enable or disable keepalive on rpc/native connections rpc_keepalive: true # Cassandra provides two out-of-the-box options for the RPC Server: # # sync # One thread per thrift connection. For a very large number of clients, memory # will be your limiting factor. On a 64 bit JVM, 180KB is the minimum stack size # per thread, and that will correspond to your use of virtual memory (but physical memory # may be limited depending on use of stack space). # # hsha # Stands for "half synchronous, half asynchronous." All thrift clients are handled # asynchronously using a small number of threads that does not vary with the amount # of thrift clients (and thus scales well to many clients). The rpc requests are still # synchronous (one thread per active request). If hsha is selected then it is essential # that rpc_max_threads is changed from the default value of unlimited. # # The default is sync because on Windows hsha is about 30% slower. On Linux, # sync/hsha performance is about the same, with hsha of course using less memory. # # Alternatively, can provide your own RPC server by providing the fully-qualified class name # of an o.a.c.t.TServerFactory that can create an instance of it. rpc_server_type: sync # Uncomment rpc_min|max_thread to set request pool size limits. # # Regardless of your choice of RPC server (see above), the number of maximum requests in the # RPC thread pool dictates how many concurrent requests are possible (but if you are using the sync # RPC server, it also dictates the number of clients that can be connected at all). # # The default is unlimited and thus provides no protection against clients overwhelming the server. You are # encouraged to set a maximum that makes sense for you in production, but do keep in mind that # rpc_max_threads represents the maximum number of client requests this server may execute concurrently. # # rpc_min_threads: 16 # rpc_max_threads: 2048 # uncomment to set socket buffer sizes on rpc connections # rpc_send_buff_size_in_bytes: # rpc_recv_buff_size_in_bytes: # Uncomment to set socket buffer size for internode communication # Note that when setting this, the buffer size is limited by net.core.wmem_max # and when not setting it it is defined by net.ipv4.tcp_wmem # See also: # /proc/sys/net/core/wmem_max # /proc/sys/net/core/rmem_max # /proc/sys/net/ipv4/tcp_wmem # /proc/sys/net/ipv4/tcp_wmem # and 'man tcp' # internode_send_buff_size_in_bytes: # Uncomment to set socket buffer size for internode communication # Note that when setting this, the buffer size is limited by net.core.wmem_max # and when not setting it it is defined by net.ipv4.tcp_wmem # internode_recv_buff_size_in_bytes: # Frame size for thrift (maximum message length). thrift_framed_transport_size_in_mb: 15 # Set to true to have Cassandra create a hard link to each sstable # flushed or streamed locally in a backups/ subdirectory of the # keyspace data. Removing these links is the operator's # responsibility. incremental_backups: false # Whether or not to take a snapshot before each compaction. Be # careful using this option, since Cassandra won't clean up the # snapshots for you. Mostly useful if you're paranoid when there # is a data format change. snapshot_before_compaction: false # Whether or not a snapshot is taken of the data before keyspace truncation # or dropping of column families. The STRONGLY advised default of true # should be used to provide data safety. If you set this flag to false, you will # lose data on truncation or drop. auto_snapshot: true # Granularity of the collation index of rows within a partition. # Increase if your rows are large, or if you have a very large # number of rows per partition. The competing goals are these: # # - a smaller granularity means more index entries are generated -# and looking up rows withing the partition by collation column +# and looking up rows within the partition by collation column # is faster # - but, Cassandra will keep the collation index in memory for hot # rows (as part of the key cache), so a larger granularity means # you can cache more hot rows column_index_size_in_kb: 64 # Per sstable indexed key cache entries (the collation index in memory # mentioned above) exceeding this size will not be held on heap. # This means that only partition information is held on heap and the # index entries are read from disk. # # Note that this size refers to the size of the # serialized index information and not the size of the partition. column_index_cache_size_in_kb: 2 # Number of simultaneous compactions to allow, NOT including # validation "compactions" for anti-entropy repair. Simultaneous # compactions can help preserve read performance in a mixed read/write # workload, by mitigating the tendency of small sstables to accumulate # during a single long running compactions. The default is usually # fine and if you experience problems with compaction running too # slowly or too fast, you should look at # compaction_throughput_mb_per_sec first. # # concurrent_compactors defaults to the smaller of (number of disks, # number of cores), with a minimum of 2 and a maximum of 8. # # If your data directories are backed by SSD, you should increase this # to the number of cores. #concurrent_compactors: 1 # Throttles compaction to the given total throughput across the entire # system. The faster you insert data, the faster you need to compact in # order to keep the sstable count down, but in general, setting this to # 16 to 32 times the rate you are inserting data is more than sufficient. # Setting this to 0 disables throttling. Note that this account for all types # of compaction, including validation compaction. compaction_throughput_mb_per_sec: 16 # When compacting, the replacement sstable(s) can be opened before they # are completely written, and used in place of the prior sstables for # any range that has been written. This helps to smoothly transfer reads # between the sstables, reducing page cache churn and keeping hot rows hot sstable_preemptive_open_interval_in_mb: 50 # Throttles all outbound streaming file transfers on this node to the # given total throughput in Mbps. This is necessary because Cassandra does # mostly sequential IO when streaming data during bootstrap or repair, which # can lead to saturating the network connection and degrading rpc performance. # When unset, the default is 200 Mbps or 25 MB/s. # stream_throughput_outbound_megabits_per_sec: 200 # Throttles all streaming file transfer between the datacenters, # this setting allows users to throttle inter dc stream throughput in addition # to throttling all network stream traffic as configured with # stream_throughput_outbound_megabits_per_sec # When unset, the default is 200 Mbps or 25 MB/s # inter_dc_stream_throughput_outbound_megabits_per_sec: 200 # How long the coordinator should wait for read operations to complete read_request_timeout_in_ms: 50000 # How long the coordinator should wait for seq or index scans to complete range_request_timeout_in_ms: 100000 # How long the coordinator should wait for writes to complete write_request_timeout_in_ms: 20000 # How long the coordinator should wait for counter writes to complete counter_write_request_timeout_in_ms: 50000 # How long a coordinator should continue to retry a CAS operation # that contends with other proposals for the same row cas_contention_timeout_in_ms: 10000 # How long the coordinator should wait for truncates to complete # (This can be much longer, because unless auto_snapshot is disabled # we need to flush first so we can snapshot before removing the data.) truncate_request_timeout_in_ms: 600000 # The default timeout for other, miscellaneous operations request_timeout_in_ms: 100000 # How long before a node logs slow queries. Select queries that take longer than # this timeout to execute, will generate an aggregated log message, so that slow queries # can be identified. Set this value to zero to disable slow query logging. slow_query_log_timeout_in_ms: 500 # Enable operation timeout information exchange between nodes to accurately # measure request timeouts. If disabled, replicas will assume that requests # were forwarded to them instantly by the coordinator, which means that # under overload conditions we will waste that much extra time processing # already-timed-out requests. # # Warning: before enabling this property make sure to ntp is installed # and the times are synchronized between the nodes. cross_node_timeout: false # Set keep-alive period for streaming # This node will send a keep-alive message periodically with this period. # If the node does not receive a keep-alive message from the peer for # 2 keep-alive cycles the stream session times out and fail # Default value is 300s (5 minutes), which means stalled stream # times out in 10 minutes by default # streaming_keep_alive_period_in_secs: 300 # phi value that must be reached for a host to be marked down. # most users should never need to adjust this. # phi_convict_threshold: 8 # endpoint_snitch -- Set this to a class that implements # IEndpointSnitch. The snitch has two functions: # # - it teaches Cassandra enough about your network topology to route # requests efficiently # - it allows Cassandra to spread replicas around your cluster to avoid # correlated failures. It does this by grouping machines into # "datacenters" and "racks." Cassandra will do its best not to have # more than one replica on the same "rack" (which may not actually # be a physical location) # # CASSANDRA WILL NOT ALLOW YOU TO SWITCH TO AN INCOMPATIBLE SNITCH # ONCE DATA IS INSERTED INTO THE CLUSTER. This would cause data loss. # This means that if you start with the default SimpleSnitch, which # locates every node on "rack1" in "datacenter1", your only options # if you need to add another datacenter are GossipingPropertyFileSnitch # (and the older PFS). From there, if you want to migrate to an # incompatible snitch like Ec2Snitch you can do it by adding new nodes # under Ec2Snitch (which will locate them in a new "datacenter") and # decommissioning the old ones. # # Out of the box, Cassandra provides: # # SimpleSnitch: # Treats Strategy order as proximity. This can improve cache # locality when disabling read repair. Only appropriate for # single-datacenter deployments. # # GossipingPropertyFileSnitch # This should be your go-to snitch for production use. The rack # and datacenter for the local node are defined in # cassandra-rackdc.properties and propagated to other nodes via # gossip. If cassandra-topology.properties exists, it is used as a # fallback, allowing migration from the PropertyFileSnitch. # # PropertyFileSnitch: # Proximity is determined by rack and data center, which are # explicitly configured in cassandra-topology.properties. # # Ec2Snitch: # Appropriate for EC2 deployments in a single Region. Loads Region # and Availability Zone information from the EC2 API. The Region is # treated as the datacenter, and the Availability Zone as the rack. # Only private IPs are used, so this will not work across multiple # Regions. # # Ec2MultiRegionSnitch: # Uses public IPs as broadcast_address to allow cross-region # connectivity. (Thus, you should set seed addresses to the public # IP as well.) You will need to open the storage_port or # ssl_storage_port on the public IP firewall. (For intra-Region # traffic, Cassandra will switch to the private IP after # establishing a connection.) # # RackInferringSnitch: # Proximity is determined by rack and data center, which are # assumed to correspond to the 3rd and 2nd octet of each node's IP # address, respectively. Unless this happens to match your # deployment conventions, this is best used as an example of # writing a custom Snitch class and is provided in that spirit. # # You can use a custom Snitch by setting this to the full class name # of the snitch, which will be assumed to be on your classpath. endpoint_snitch: SimpleSnitch # controls how often to perform the more expensive part of host score # calculation dynamic_snitch_update_interval_in_ms: 100 # controls how often to reset all host scores, allowing a bad host to # possibly recover dynamic_snitch_reset_interval_in_ms: 600000 # if set greater than zero and read_repair_chance is < 1.0, this will allow # 'pinning' of replicas to hosts in order to increase cache capacity. # The badness threshold will control how much worse the pinned host has to be # before the dynamic snitch will prefer other replicas over it. This is # expressed as a double which represents a percentage. Thus, a value of # 0.2 means Cassandra would continue to prefer the static snitch values # until the pinned host was 20% worse than the fastest. dynamic_snitch_badness_threshold: 0.1 # request_scheduler -- Set this to a class that implements # RequestScheduler, which will schedule incoming client requests # according to the specific policy. This is useful for multi-tenancy # with a single Cassandra cluster. # NOTE: This is specifically for requests from the client and does # not affect inter node communication. # org.apache.cassandra.scheduler.NoScheduler - No scheduling takes place # org.apache.cassandra.scheduler.RoundRobinScheduler - Round robin of # client requests to a node with a separate queue for each # request_scheduler_id. The scheduler is further customized by # request_scheduler_options as described below. request_scheduler: org.apache.cassandra.scheduler.NoScheduler # Scheduler Options vary based on the type of scheduler # # NoScheduler # Has no options # # RoundRobin # throttle_limit # The throttle_limit is the number of in-flight # requests per client. Requests beyond # that limit are queued up until # running requests can complete. # The value of 80 here is twice the number of # concurrent_reads + concurrent_writes. # default_weight # default_weight is optional and allows for # overriding the default which is 1. # weights # Weights are optional and will default to 1 or the # overridden default_weight. The weight translates into how # many requests are handled during each turn of the # RoundRobin, based on the scheduler id. # # request_scheduler_options: # throttle_limit: 80 # default_weight: 5 # weights: # Keyspace1: 1 # Keyspace2: 5 # request_scheduler_id -- An identifier based on which to perform # the request scheduling. Currently the only valid option is keyspace. # request_scheduler_id: keyspace # Enable or disable inter-node encryption # JVM defaults for supported SSL socket protocols and cipher suites can # be replaced using custom encryption options. This is not recommended # unless you have policies in place that dictate certain settings, or # need to disable vulnerable ciphers or protocols in case the JVM cannot # be updated. # FIPS compliant settings can be configured at JVM level and should not # involve changing encryption settings here: # https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/FIPS.html # *NOTE* No custom encryption options are enabled at the moment # The available internode options are : all, none, dc, rack # # If set to dc cassandra will encrypt the traffic between the DCs # If set to rack cassandra will encrypt the traffic between the racks # # The passwords used in these options must match the passwords used when generating # the keystore and truststore. For instructions on generating these files, see: # http://download.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore # server_encryption_options: internode_encryption: none keystore: conf/.keystore keystore_password: cassandra truststore: conf/.truststore truststore_password: cassandra # More advanced defaults below: # protocol: TLS # algorithm: SunX509 # store_type: JKS # cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA] # require_client_auth: false # require_endpoint_verification: false # enable or disable client/server encryption. client_encryption_options: enabled: false # If enabled and optional is set to true encrypted and unencrypted connections are handled. optional: false keystore: conf/.keystore keystore_password: cassandra # require_client_auth: false # Set trustore and truststore_password if require_client_auth is true # truststore: conf/.truststore # truststore_password: cassandra # More advanced defaults below: # protocol: TLS # algorithm: SunX509 # store_type: JKS # cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA] # internode_compression controls whether traffic between nodes is # compressed. # Can be: # # all # all traffic is compressed # # dc # traffic between different datacenters is compressed # # none # nothing is compressed. internode_compression: dc # Enable or disable tcp_nodelay for inter-dc communication. # Disabling it will result in larger (but fewer) network packets being sent, # reducing overhead from the TCP protocol itself, at the cost of increasing # latency if you block for cross-datacenter responses. inter_dc_tcp_nodelay: false # TTL for different trace types used during logging of the repair process. tracetype_query_ttl: 86400 tracetype_repair_ttl: 604800 # By default, Cassandra logs GC Pauses greater than 200 ms at INFO level # This threshold can be adjusted to minimize logging if necessary # gc_log_threshold_in_ms: 200 # If unset, all GC Pauses greater than gc_log_threshold_in_ms will log at # INFO level # UDFs (user defined functions) are disabled by default. # As of Cassandra 3.0 there is a sandbox in place that should prevent execution of evil code. enable_user_defined_functions: true # Enables scripted UDFs (JavaScript UDFs). # Java UDFs are always enabled, if enable_user_defined_functions is true. # Enable this option to be able to use UDFs with "language javascript" or any custom JSR-223 provider. # This option has no effect, if enable_user_defined_functions is false. enable_scripted_user_defined_functions: false # Enables materialized view creation on this node. # Materialized views are considered experimental and are not recommended for production use. enable_materialized_views: true # The default Windows kernel timer and scheduling resolution is 15.6ms for power conservation. # Lowering this value on Windows can provide much tighter latency and better throughput, however # some virtualized environments may see a negative performance impact from changing this setting # below their system default. The sysinternals 'clockres' tool can confirm your system's default # setting. windows_timer_interval: 1 # Enables encrypting data at-rest (on disk). Different key providers can be plugged in, but the default reads from # a JCE-style keystore. A single keystore can hold multiple keys, but the one referenced by -# the "key_alias" is the only key that will be used for encrypt opertaions; previously used keys +# the "key_alias" is the only key that will be used for encrypt operations; previously used keys # can still (and should!) be in the keystore and will be used on decrypt operations # (to handle the case of key rotation). # # It is strongly recommended to download and install Java Cryptography Extension (JCE) # Unlimited Strength Jurisdiction Policy Files for your version of the JDK. # (current link: http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html) # # Currently, only the following file types are supported for transparent data encryption, although # more are coming in future cassandra releases: commitlog, hints transparent_data_encryption_options: enabled: false chunk_length_kb: 64 cipher: AES/CBC/PKCS5Padding key_alias: testing:1 # CBC IV length for AES needs to be 16 bytes (which is also the default size) # iv_length: 16 key_provider: - class_name: org.apache.cassandra.security.JKSKeyProvider parameters: - keystore: conf/.keystore keystore_password: cassandra store_type: JCEKS key_password: cassandra ##################### # SAFETY THRESHOLDS # ##################### # When executing a scan, within or across a partition, we need to keep the # tombstones seen in memory so we can return them to the coordinator, which # will use them to make sure other replicas also know about the deleted rows. # With workloads that generate a lot of tombstones, this can cause performance # problems and even exaust the server heap. # (http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets) # Adjust the thresholds here if you understand the dangers and want to # scan more tombstones anyway. These thresholds may also be adjusted at runtime # using the StorageService mbean. tombstone_warn_threshold: 1000 tombstone_failure_threshold: 100000 # Log WARN on any multiple-partition batch size exceeding this value. 5kb per batch by default. # Caution should be taken on increasing the size of this threshold as it can lead to node instability. batch_size_warn_threshold_in_kb: 5 # Fail any multiple-partition batch exceeding this value. 50kb (10x warn threshold) by default. batch_size_fail_threshold_in_kb: 50 # Log WARN on any batches not of type LOGGED than span across more partitions than this limit unlogged_batch_across_partitions_warn_threshold: 10 # Log a warning when compacting partitions larger than this value compaction_large_partition_warning_threshold_mb: 100 # GC Pauses greater than gc_warn_threshold_in_ms will be logged at WARN level # Adjust the threshold based on your application throughput requirement # By default, Cassandra logs GC Pauses greater than 200 ms at INFO level gc_warn_threshold_in_ms: 1000 # Maximum size of any value in SSTables. Safety measure to detect SSTable corruption # early. Any value size larger than this threshold will result into marking an SSTable # as corrupted. This should be positive and less than 2048. # max_value_size_in_mb: 256 # Back-pressure settings # # If enabled, the coordinator will apply the back-pressure strategy specified below to each mutation # sent to replicas, with the aim of reducing pressure on overloaded replicas. back_pressure_enabled: false # The back-pressure strategy applied. # The default implementation, RateBasedBackPressure, takes three arguments: # high ratio, factor, and flow type, and uses the ratio between incoming mutation responses and outgoing mutation requests. # If below high ratio, outgoing mutations are rate limited according to the incoming rate decreased by the given factor; # if above high ratio, the rate limiting is increased by the given factor; # such factor is usually best configured between 1 and 10, use larger values for a faster recovery # at the expense of potentially more dropped mutations; # the rate limiting is applied according to the flow type: if FAST, it's rate limited at the speed of the fastest replica, # if SLOW at the speed of the slowest one. # New strategies can be added. Implementors need to implement org.apache.cassandra.net.BackpressureStrategy and # provide a public constructor accepting a Map. back_pressure_strategy: - class_name: org.apache.cassandra.net.RateBasedBackPressure parameters: - high_ratio: 0.90 factor: 5 flow: FAST # Coalescing Strategies # # Coalescing multiples messages turns out to significantly boost message processing throughput (think doubling or more). # On bare metal, the floor for packet processing throughput is high enough that many applications won't notice, but in # virtualized environments, the point at which an application can be bound by network packet processing can be # surprisingly low compared to the throughput of task processing that is possible inside a VM. It's not that bare metal # doesn't benefit from coalescing messages, it's that the number of packets a bare metal network interface can process # is sufficient for many applications such that no load starvation is experienced even without coalescing. # There are other benefits to coalescing network messages that are harder to isolate with a simple metric like messages # per second. By coalescing multiple tasks together, a network thread can process multiple messages for the cost of one # trip to read from a socket, and all the task submission work can be done at the same time reducing context switching # and increasing cache friendliness of network message processing. # See CASSANDRA-8692 for details. # Strategy to use for coalescing messages in OutboundTcpConnection. # Can be fixed, movingaverage, timehorizon, disabled (default). # You can also specify a subclass of CoalescingStrategies.CoalescingStrategy by name. # otc_coalescing_strategy: DISABLED # How many microseconds to wait for coalescing. For fixed strategy this is the amount of time after the first # message is received before it will be sent with any accompanying messages. For moving average this is the # maximum amount of time that will be waited as well as the interval at which messages must arrive on average # for coalescing to be enabled. # otc_coalescing_window_us: 200 # Do not try to coalesce messages if we already got that many messages. This should be more than 2 and less than 128. # otc_coalescing_enough_coalesced_messages: 8 # How many milliseconds to wait between two expiration runs on the backlog (queue) of the OutboundTcpConnection. # Expiration is done if messages are piling up in the backlog. Droppable messages are expired to free the memory # taken by expired messages. The interval should be between 0 and 1000, and in most installations the default value # will be appropriate. A smaller value could potentially expire messages slightly sooner at the expense of more CPU # time and queue contention while iterating the backlog of messages. # An interval of 0 disables any wait time, which is the behavior of former Cassandra versions. # # otc_backlog_expiration_interval_ms: 200 diff --git a/docker/tests/test_02_vault.sh b/docker/tests/test_02_vault.sh index 0f4ee25..b4255fd 100644 --- a/docker/tests/test_02_vault.sh +++ b/docker/tests/test_02_vault.sh @@ -1,26 +1,26 @@ #!/bin/bash directory=${DIRECTORIES[$RANDOM % ${#DIRECTORIES[@]}]} revision=${REVISIONS[$RANDOM % ${#REVISIONS[@]}]} status_message "Requesting the vault to cook a random directory stored into the archive" http_request_check POST ${SWH_WEB_API_BASEURL}/vault/directory/$directory/ status_message "Waiting for the directory cooking task to complete" wait_for_service_output 300 swh-vault-worker "swh.vault.cooking_tasks.SWHCookingTask.*succeeded" -status_message "The directory cooking task has been sucessfully executed" +status_message "The directory cooking task has been successfully executed" status_message "Checking that the cooked directory tarball can be downloaded" http_request_check GET ${SWH_WEB_API_BASEURL}/vault/directory/$directory/raw/ status_message "The cooked directory tarball is available for download" status_message "Requesting the vault to cook a random revision stored into the archive" http_request_check POST ${SWH_WEB_API_BASEURL}/vault/revision/$revision/gitfast/ status_message "Waiting for the revision cooking task to complete" wait_for_service_output 300 swh-vault-worker "swh.vault.cooking_tasks.SWHCookingTask.*succeeded" -status_message "The revision cooking task has been sucessfully executed" +status_message "The revision cooking task has been successfully executed" status_message "Checking that the cooked revision tarball can be downloaded" http_request_check GET ${SWH_WEB_API_BASEURL}/vault/revision/$revision/gitfast/raw/ status_message "The cooked revision tarball is available for download" diff --git a/docker/tests/test_git_loader.py b/docker/tests/test_git_loader.py index 058c4cd..b8c2d43 100644 --- a/docker/tests/test_git_loader.py +++ b/docker/tests/test_git_loader.py @@ -1,61 +1,61 @@ # Copyright (C) 2019-2021 The Software Heritage developers # See the AUTHORS file at the top-level directory of this distribution # License: GNU General Public License version 3, or any later version # See top-level LICENSE file for more information from urllib.parse import quote_plus from .conftest import apiget def test_git_loader(scheduler_host, git_origin): url = git_origin print(f"Retrieve references available at {url}") gitrefs = scheduler_host.check_output(f"git ls-remote {url}") gitrefs = [x.split() for x in gitrefs.splitlines()] print(f"Look for origin {url}") # use quote_plus to prevent urljoin from messing with the 'http://' part of # the url origin = apiget(f"origin/{quote_plus(url)}/get") assert origin["url"] == url visit = apiget(f"origin/{quote_plus(url)}/visit/latest") assert visit["status"] == "full" print("Check every identified git ref has been loaded") snapshot = apiget(f'snapshot/{visit["snapshot"]}') print(f'snapshot has {len(snapshot["branches"])} branches') branches = snapshot["branches"] # check every branch reported by git ls-remote is present in the snapshot for rev, branch_name in gitrefs: # for tags, only check for final revision id if branch_name.startswith("refs/tags/") and not branch_name.endswith("^{}"): continue rev_desc = apiget(f"revision/{rev}") assert rev_desc["type"] == "git" tag_revision = {} tag_release = {} for rev, tag in gitrefs: if tag.startswith("refs/tags/"): if tag.endswith("^{}"): tag_revision[tag[:-3]] = rev else: tag_release[tag] = rev for tag, revision in tag_revision.items(): # check that every release tag listed in the snapshot is known by the - # archive and consistant + # archive and consistent release_id = tag_release[tag] release = apiget(f"release/{release_id}") assert release["id"] == release_id assert release["target_type"] == "revision" assert release["target"] == revision # and compare this with what git ls-remote reported tag_desc = branches[tag] assert tag_desc["target_type"] == "release" assert tag_desc["target"] == release_id diff --git a/pylintrc b/pylintrc index 618d6e4..a67712f 100644 --- a/pylintrc +++ b/pylintrc @@ -1,407 +1,407 @@ [MASTER] # Specify a configuration file. #rcfile= # Python code to execute, usually for sys.path manipulation such as # pygtk.require(). #init-hook= # Add files or directories to the blacklist. They should be base names, not # paths. ignore=.git # Add files or directories matching the regex patterns to the blacklist. The # regex matches against base names, not paths. ignore-patterns= # Pickle collected data for later comparisons. persistent=yes # List of plugins (as comma separated values of python modules names) to load, # usually to register additional checkers. load-plugins=pylint.extensions.docparams # Use multiple processes to speed up Pylint. jobs=2 # Allow loading of arbitrary C extensions. Extensions are imported into the # active Python interpreter and may run arbitrary code. unsafe-load-any-extension=no # A comma-separated list of package or module names from where C extensions may # be loaded. Extensions are loading into the active Python interpreter and may # run arbitrary code extension-pkg-whitelist= # Allow optimization of some AST trees. This will activate a peephole AST # optimizer, which will apply various small optimizations. For instance, it can # be used to obtain the result of joining multiple strings with the addition # operator. Joining a lot of strings can lead to a maximum recursion error in # Pylint and this flag can prevent that. It has one side effect, the resulting # AST will be different than the one from reality. This option is deprecated # and it will be removed in Pylint 2.0. optimize-ast=no [MESSAGES CONTROL] # Only show warnings with the listed confidence levels. Leave empty to show # all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED confidence= # Enable the message, report, category or checker with the given id(s). You can # either give multiple identifier separated by comma (,) or put this option # multiple time (only on the command line, not in the configuration file where # it should appear only once). See also the "--disable" option for examples. enable= # Disable the message, report, category or checker with the given id(s). You # can either give multiple identifiers separated by comma (,) or put this # option multiple times (only on the command line, not in the configuration # file where it should appear only once).You can also use "--disable=all" to -# disable everything first and then reenable specific checks. For example, if +# disable everything first and then re-enable specific checks. For example, if # you want to run only the similarities checker, you can use "--disable=all # --enable=similarities". If you want to run only the classes checker, but have # no Warning level messages displayed, use"--disable=all --enable=classes # --disable=W" disable=dict-iter-method,cmp-builtin,execfile-builtin,apply-builtin,backtick,unpacking-in-except,standarderror-builtin,getslice-method,nonzero-method,reduce-builtin,filter-builtin-not-iterating,cmp-method,round-builtin,xrange-builtin,suppressed-message,setslice-method,oct-method,print-statement,raw_input-builtin,indexing-exception,long-builtin,old-octal-literal,map-builtin-not-iterating,unicode-builtin,buffer-builtin,coerce-method,dict-view-method,hex-method,unichr-builtin,old-division,zip-builtin-not-iterating,file-builtin,coerce-builtin,basestring-builtin,next-method-called,range-builtin-not-iterating,raising-string,old-raise-syntax,metaclass-assignment,intern-builtin,long-suffix,reload-builtin,using-cmp-argument,useless-suppression,old-ne-operator,import-star-module-level,no-absolute-import,delslice-method,input-builtin,parameter-unpacking [REPORTS] # Set the output format. Available formats are text, parseable, colorized, msvs # (visual studio) and html. You can also give a reporter class, eg # mypackage.mymodule.MyReporterClass. output-format=text # Put messages in a separate file for each module / package specified on the # command line instead of printing them on stdout. Reports (if any) will be # written in a file name "pylint_global.[txt|html]". This option is deprecated # and it will be removed in Pylint 2.0. files-output=no # Tells whether to display a full report or only the messages reports=yes # Python expression which should return a note less than 10 (10 is the highest # note). You have access to the variables errors warning, statement which # respectively contain the number of errors / warnings messages and the total # number of statements analyzed. This is used by the global evaluation report # (RP0004). evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10) # Template used to display messages. This is a python new-style format string # used to format the message information. See doc for all details #msg-template= [BASIC] # Good variable names which should always be accepted, separated by a comma good-names=i,j,k,ex,Run,_ # Bad variable names which should always be refused, separated by a comma bad-names=foo,bar,baz,toto,tutu,tata # Colon-delimited sets of names that determine each other's naming style when # the name regexes allow several styles. name-group= # Include a hint for the correct naming format with invalid-name include-naming-hint=no # List of decorators that produce properties, such as abc.abstractproperty. Add # to this list to register other decorators that produce valid properties. property-classes=abc.abstractproperty # Regular expression matching correct constant names const-rgx=(([A-Z_][A-Z0-9_]*)|(__.*__))$ # Naming hint for constant names const-name-hint=(([A-Z_][A-Z0-9_]*)|(__.*__))$ # Regular expression matching correct method names method-rgx=[a-z_][a-z0-9_]{2,30}$ # Naming hint for method names method-name-hint=[a-z_][a-z0-9_]{2,30}$ # Regular expression matching correct inline iteration names inlinevar-rgx=[A-Za-z_][A-Za-z0-9_]*$ # Naming hint for inline iteration names inlinevar-name-hint=[A-Za-z_][A-Za-z0-9_]*$ # Regular expression matching correct variable names variable-rgx=[a-z_][a-z0-9_]{2,30}$ # Naming hint for variable names variable-name-hint=[a-z_][a-z0-9_]{2,30}$ # Regular expression matching correct argument names argument-rgx=[a-z_][a-z0-9_]{2,30}$ # Naming hint for argument names argument-name-hint=[a-z_][a-z0-9_]{2,30}$ # Regular expression matching correct class attribute names class-attribute-rgx=([A-Za-z_][A-Za-z0-9_]{2,30}|(__.*__))$ # Naming hint for class attribute names class-attribute-name-hint=([A-Za-z_][A-Za-z0-9_]{2,30}|(__.*__))$ # Regular expression matching correct module names module-rgx=(([a-z_][a-z0-9_]*)|([A-Z][a-zA-Z0-9]+))$ # Naming hint for module names module-name-hint=(([a-z_][a-z0-9_]*)|([A-Z][a-zA-Z0-9]+))$ # Regular expression matching correct function names function-rgx=[a-z_][a-z0-9_]{2,30}$ # Naming hint for function names function-name-hint=[a-z_][a-z0-9_]{2,30}$ # Regular expression matching correct attribute names attr-rgx=[a-z_][a-z0-9_]{2,30}$ # Naming hint for attribute names attr-name-hint=[a-z_][a-z0-9_]{2,30}$ # Regular expression matching correct class names class-rgx=[A-Z_][a-zA-Z0-9]+$ # Naming hint for class names class-name-hint=[A-Z_][a-zA-Z0-9]+$ # Regular expression which should only match function or class names that do # not require a docstring. no-docstring-rgx=^_ # Minimum line length for functions/classes that require docstrings, shorter # ones are exempt. docstring-min-length=-1 [ELIF] # Maximum number of nested blocks for function / method body max-nested-blocks=5 [TYPECHECK] # Tells whether missing members accessed in mixin class should be ignored. A # mixin class is detected if its name ends with "mixin" (case insensitive). ignore-mixin-members=yes # List of module names for which member attributes should not be checked # (useful for modules/projects where namespaces are manipulated during runtime # and thus existing member attributes cannot be deduced by static analysis. It # supports qualified module names, as well as Unix pattern matching. ignored-modules= # List of class names for which member attributes should not be checked (useful # for classes with dynamically set attributes). This supports the use of # qualified names. ignored-classes=optparse.Values,thread._local,_thread._local # List of members which are set dynamically and missed by pylint inference # system, and so shouldn't trigger E1101 when accessed. Python regular # expressions are accepted. generated-members= # List of decorators that produce context managers, such as # contextlib.contextmanager. Add to this list to register other decorators that # produce valid context managers. contextmanager-decorators=contextlib.contextmanager [VARIABLES] # Tells whether we should check for unused import in __init__ files. init-import=no # A regular expression matching the name of dummy variables (i.e. expectedly # not used). dummy-variables-rgx=(_+[a-zA-Z0-9]*?$)|dummy # List of additional names supposed to be defined in builtins. Remember that # you should avoid to define new builtins when possible. additional-builtins= # List of strings which can identify a callback function by name. A callback # name must start or end with one of those strings. callbacks=cb_,_cb # List of qualified module names which can have objects that can redefine # builtins. redefining-builtins-modules=six.moves,future.builtins [LOGGING] # Logging modules to check that the string format arguments are in logging # function parameter format logging-modules=logging [SIMILARITIES] # Minimum lines number of a similarity. min-similarity-lines=4 # Ignore comments when computing similarities. ignore-comments=yes # Ignore docstrings when computing similarities. ignore-docstrings=yes # Ignore imports when computing similarities. ignore-imports=no [SPELLING] # Spelling dictionary name. Available dictionaries: none. To make it working # install python-enchant package. spelling-dict= # List of comma separated words that should not be checked. spelling-ignore-words= # A path to a file that contains private dictionary; one word per line. spelling-private-dict-file= # Tells whether to store unknown words to indicated private dictionary in # --spelling-private-dict-file option instead of raising a message. spelling-store-unknown-words=no [FORMAT] # Maximum number of characters on a single line. max-line-length=100 # Regexp for a line that is allowed to be longer than the limit. ignore-long-lines=^\s*(# )??$ # Allow the body of an if to be on the same line as the test if there is no # else. single-line-if-stmt=no # List of optional constructs for which whitespace checking is disabled. `dict- # separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}. # `trailing-comma` allows a space between comma and closing bracket: (a, ). # `empty-line` allows space-only lines. no-space-check=trailing-comma,dict-separator # Maximum number of lines in a module max-module-lines=1000 # String used as indentation unit. This is usually " " (4 spaces) or "\t" (1 # tab). indent-string=' ' # Number of spaces of indent required inside a hanging or continued line. indent-after-paren=4 # Expected format of line ending, e.g. empty (any line ending), LF or CRLF. expected-line-ending-format= [MISCELLANEOUS] # List of note tags to take in consideration, separated by a comma. notes=FIXME,XXX,TODO [IMPORTS] # Deprecated modules which should not be used, separated by a comma deprecated-modules=optparse # Create a graph of every (i.e. internal and external) dependencies in the # given file (report RP0402 must not be disabled) import-graph= # Create a graph of external dependencies in the given file (report RP0402 must # not be disabled) ext-import-graph= # Create a graph of internal dependencies in the given file (report RP0402 must # not be disabled) int-import-graph= # Force import order to recognize a module as part of the standard # compatibility libraries. known-standard-library= # Force import order to recognize a module as part of a third party library. known-third-party=enchant # Analyse import fallback blocks. This can be used to support both Python 2 and # 3 compatible code, which means that the block might have code that exists # only in one or another interpreter, leading to false positives when analysed. analyse-fallback-blocks=no [CLASSES] # List of method names used to declare (i.e. assign) instance attributes. defining-attr-methods=__init__,__new__,setUp # List of valid names for the first argument in a class method. valid-classmethod-first-arg=cls # List of valid names for the first argument in a metaclass class method. valid-metaclass-classmethod-first-arg=mcs # List of member names, which should be excluded from the protected access # warning. exclude-protected=_asdict,_fields,_replace,_source,_make [DESIGN] # Maximum number of arguments for function / method max-args=5 # Argument names that match this expression will be ignored. Default to name # with leading underscore ignored-argument-names=_.* # Maximum number of locals for function / method body max-locals=15 # Maximum number of return / yield for function / method body max-returns=6 # Maximum number of branch for function / method body max-branches=12 # Maximum number of statements in function / method body max-statements=50 # Maximum number of parents for a class (see R0901). max-parents=7 # Maximum number of attributes for a class (see R0902). max-attributes=7 # Minimum number of public methods for a class (see R0903). min-public-methods=2 # Maximum number of public methods for a class (see R0904). max-public-methods=20 # Maximum number of boolean expressions in a if statement max-bool-expr=5 [EXCEPTIONS] # Exceptions that will emit a warning when being caught. Defaults to # "Exception" overgeneral-exceptions=Exception