Page Menu
Home
Software Heritage
Search
Configure Global Search
Log In
Files
F9345217
journalprocessor.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
14 KB
Subscribers
None
journalprocessor.py
View Options
# Copyright (C) 2020 The Software Heritage developers
# See the AUTHORS file at the top-level directory of this distribution
# License: GNU General Public License version 3, or any later version
# See top-level LICENSE file for more information
import
collections
import
concurrent.futures
from
concurrent.futures
import
FIRST_EXCEPTION
,
ProcessPoolExecutor
import
contextlib
from
hashlib
import
sha1
import
logging
import
multiprocessing
from
pathlib
import
Path
import
time
from
typing
import
Any
,
Dict
,
Mapping
,
Sequence
,
Tuple
,
Type
from
confluent_kafka
import
TopicPartition
import
tqdm
from
swh.dataset.exporter
import
Exporter
from
swh.dataset.utils
import
LevelDBSet
from
swh.journal.client
import
JournalClient
from
swh.journal.serializers
import
kafka_to_value
from
swh.model.identifiers
import
origin_identifier
from
swh.storage.fixer
import
fix_objects
class
JournalClientOffsetRanges
(
JournalClient
):
"""
A subclass of JournalClient reading only inside some specific offset
range. Partition assignments have to be manually given to the class.
This client can only read a single topic at a time.
"""
def
__init__
(
self
,
*
args
,
offset_ranges
:
Mapping
[
int
,
Tuple
[
int
,
int
]]
=
None
,
assignment
:
Sequence
[
int
]
=
None
,
progress_queue
:
multiprocessing
.
Queue
=
None
,
refresh_every
:
int
=
200
,
**
kwargs
,
):
"""
Args:
offset_ranges: A mapping of partition_id -> (low, high) offsets
that define the boundaries of the messages to consume.
assignment: The list of partitions to assign to this client.
progress_queue: a multiprocessing.Queue where the current
progress will be reported.
refresh_every: the refreshing rate of the progress reporting.
"""
self
.
offset_ranges
=
offset_ranges
self
.
progress_queue
=
progress_queue
self
.
refresh_every
=
refresh_every
self
.
assignment
=
assignment
self
.
count
=
None
self
.
topic_name
=
None
super
()
.
__init__
(
*
args
,
**
kwargs
)
def
subscribe
(
self
):
self
.
topic_name
=
self
.
subscription
[
0
]
time
.
sleep
(
0.1
)
# https://github.com/edenhill/librdkafka/issues/1983
self
.
consumer
.
assign
(
[
TopicPartition
(
self
.
topic_name
,
pid
)
for
pid
in
self
.
assignment
]
)
def
process
(
self
,
*
args
,
**
kwargs
):
self
.
count
=
0
try
:
self
.
handle_committed_offsets
()
super
()
.
process
(
*
args
,
**
kwargs
)
except
EOFError
:
pass
finally
:
self
.
progress_queue
.
put
(
None
)
def
handle_committed_offsets
(
self
,):
"""
Handle already committed partition offsets before starting processing.
"""
committed
=
self
.
consumer
.
committed
(
[
TopicPartition
(
self
.
topic_name
,
pid
)
for
pid
in
self
.
assignment
]
)
for
tp
in
committed
:
self
.
handle_offset
(
tp
.
partition
,
tp
.
offset
)
def
handle_offset
(
self
,
partition_id
,
offset
):
"""
Check whether the client has reached the end of the current
partition, and trigger a reassignment if that is the case.
Raise EOFError if all the partitions have reached the end.
"""
if
offset
<
0
:
# Uninitialized partition offset
return
if
self
.
count
%
self
.
refresh_every
==
0
:
self
.
progress_queue
.
put
({
partition_id
:
offset
})
if
offset
>=
self
.
offset_ranges
[
partition_id
][
1
]
-
1
:
self
.
assignment
=
[
pid
for
pid
in
self
.
assignment
if
pid
!=
partition_id
]
self
.
subscribe
()
if
not
self
.
assignment
:
raise
EOFError
def
deserialize_message
(
self
,
message
):
"""
Override of the message deserialization to hook the handling of the
message offset.
We also return the raw objects instead of deserializing them because we
will need the partition ID later.
"""
self
.
handle_offset
(
message
.
partition
(),
message
.
offset
())
self
.
count
+=
1
return
message
class
ParallelJournalProcessor
:
"""
Reads the given object type from the journal in parallel.
It creates one JournalExportWorker per process.
"""
def
__init__
(
self
,
config
,
exporters
:
Sequence
[
Tuple
[
Type
[
Exporter
],
Dict
[
str
,
Any
]]],
export_id
:
str
,
obj_type
:
str
,
node_sets_path
:
Path
,
processes
:
int
=
1
,
):
"""
Args:
config: the exporter config, which should also include the
JournalClient configuration.
exporters: a list of Exporter to process the objects
export_id: a unique identifier for the export that will be used
as part of a Kafka consumer group ID.
obj_type: The type of SWH object to export.
node_sets_path: A directory where to store the node sets.
processes: The number of processes to run.
"""
self
.
config
=
config
self
.
exporters
=
exporters
self
.
export_id
=
"swh-dataset-export-{}"
.
format
(
export_id
)
self
.
obj_type
=
obj_type
self
.
processes
=
processes
self
.
node_sets_path
=
node_sets_path
self
.
offsets
=
None
def
get_offsets
(
self
):
"""
First pass to fetch all the current low and high offsets of each
partition to define the consumption boundaries.
"""
if
self
.
offsets
is
None
:
client
=
JournalClient
(
**
self
.
config
[
"journal"
],
object_types
=
[
self
.
obj_type
],
group_id
=
self
.
export_id
,
)
topic_name
=
client
.
subscription
[
0
]
topics
=
client
.
consumer
.
list_topics
(
topic_name
)
.
topics
partitions
=
topics
[
topic_name
]
.
partitions
self
.
offsets
=
{}
def
fetch_insert_partition_id
(
partition_id
):
tp
=
TopicPartition
(
topic_name
,
partition_id
)
(
lo
,
hi
)
=
client
.
consumer
.
get_watermark_offsets
(
tp
)
self
.
offsets
[
partition_id
]
=
(
lo
,
hi
)
with
concurrent
.
futures
.
ThreadPoolExecutor
(
max_workers
=
self
.
processes
)
as
executor
:
list
(
tqdm
.
tqdm
(
executor
.
map
(
fetch_insert_partition_id
,
partitions
.
keys
()),
total
=
len
(
partitions
),
desc
=
" - Partition offsets"
,
)
)
return
self
.
offsets
def
run
(
self
):
"""
Run the parallel export.
"""
offsets
=
self
.
get_offsets
()
to_assign
=
list
(
offsets
.
keys
())
manager
=
multiprocessing
.
Manager
()
q
=
manager
.
Queue
()
with
ProcessPoolExecutor
(
self
.
processes
+
1
)
as
pool
:
futures
=
[]
for
i
in
range
(
self
.
processes
):
futures
.
append
(
pool
.
submit
(
self
.
export_worker
,
assignment
=
to_assign
[
i
::
self
.
processes
],
progress_queue
=
q
,
)
)
futures
.
append
(
pool
.
submit
(
self
.
progress_worker
,
queue
=
q
))
concurrent
.
futures
.
wait
(
futures
,
return_when
=
FIRST_EXCEPTION
)
for
f
in
futures
:
if
f
.
running
():
continue
exc
=
f
.
exception
()
if
exc
:
pool
.
shutdown
(
wait
=
False
)
f
.
result
()
raise
exc
def
progress_worker
(
self
,
queue
=
None
):
"""
An additional worker process that reports the current progress of the
export between all the different parallel consumers and across all the
partitions, by consuming the shared progress reporting Queue.
"""
d
=
{}
active_workers
=
self
.
processes
offset_diff
=
sum
((
hi
-
lo
)
for
lo
,
hi
in
self
.
offsets
.
values
())
with
tqdm
.
tqdm
(
total
=
offset_diff
,
desc
=
" - Journal export"
)
as
pbar
:
while
active_workers
:
item
=
queue
.
get
()
if
item
is
None
:
active_workers
-=
1
continue
d
.
update
(
item
)
progress
=
sum
(
n
-
self
.
offsets
[
p
][
0
]
for
p
,
n
in
d
.
items
())
pbar
.
set_postfix
(
active_workers
=
active_workers
,
total_workers
=
self
.
processes
)
pbar
.
update
(
progress
-
pbar
.
n
)
def
export_worker
(
self
,
assignment
,
progress_queue
):
worker
=
JournalProcessorWorker
(
self
.
config
,
self
.
exporters
,
self
.
export_id
,
self
.
obj_type
,
self
.
offsets
,
assignment
,
progress_queue
,
self
.
node_sets_path
,
)
with
worker
:
worker
.
run
()
class
JournalProcessorWorker
:
"""
Worker process that processes all the messages and calls the given exporters
for each object read from the journal.
"""
def
__init__
(
self
,
config
,
exporters
:
Sequence
[
Tuple
[
Type
[
Exporter
],
Dict
[
str
,
Any
]]],
export_id
:
str
,
obj_type
:
str
,
offsets
:
Dict
[
int
,
Tuple
[
int
,
int
]],
assignment
:
Sequence
[
int
],
progress_queue
:
multiprocessing
.
Queue
,
node_sets_path
:
Path
,
):
self
.
config
=
config
self
.
export_id
=
export_id
self
.
obj_type
=
obj_type
self
.
offsets
=
offsets
self
.
assignment
=
assignment
self
.
progress_queue
=
progress_queue
self
.
node_sets_path
=
node_sets_path
self
.
node_sets_path
.
mkdir
(
exist_ok
=
True
,
parents
=
True
)
self
.
node_sets
:
Dict
[
Tuple
[
int
,
str
],
LevelDBSet
]
=
{}
self
.
exporters
=
[
exporter_class
(
config
,
**
kwargs
)
for
exporter_class
,
kwargs
in
exporters
]
self
.
exit_stack
:
contextlib
.
ExitStack
=
contextlib
.
ExitStack
()
def
__enter__
(
self
):
self
.
exit_stack
.
__enter__
()
for
exporter
in
self
.
exporters
:
self
.
exit_stack
.
enter_context
(
exporter
)
return
self
def
__exit__
(
self
,
exc_type
,
exc_value
,
traceback
):
self
.
exit_stack
.
__exit__
(
exc_type
,
exc_value
,
traceback
)
def
get_node_set_for_object
(
self
,
partition_id
:
int
,
object_id
:
bytes
):
"""
Return an on-disk set object, which stores the nodes that have
already been processed.
Node sets are sharded by partition ID (as each object is guaranteed to
be assigned to a deterministic Kafka partition) then by object ID
prefix. The sharding path of each file looks like:
.node_sets/{origin..content}/part-{0..256}/nodes-{0..f}.sqlite
"""
obj_id_prefix
=
"{:x}"
.
format
(
object_id
[
0
]
%
16
)
shard_id
=
(
partition_id
,
obj_id_prefix
)
if
shard_id
not
in
self
.
node_sets
:
node_set_dir
=
(
self
.
node_sets_path
/
self
.
obj_type
/
(
"part-{}"
.
format
(
str
(
partition_id
)))
)
node_set_dir
.
mkdir
(
exist_ok
=
True
,
parents
=
True
)
node_set_file
=
node_set_dir
/
"nodes-{}.db"
.
format
(
obj_id_prefix
)
node_set
=
LevelDBSet
(
node_set_file
)
self
.
exit_stack
.
enter_context
(
node_set
)
self
.
node_sets
[
shard_id
]
=
node_set
return
self
.
node_sets
[
shard_id
]
def
run
(
self
):
"""
Start a Journal client on the given assignment and process all the
incoming messages.
"""
client
=
JournalClientOffsetRanges
(
**
self
.
config
[
"journal"
],
object_types
=
[
self
.
obj_type
],
group_id
=
self
.
export_id
,
debug
=
"cgrp,broker"
,
offset_ranges
=
self
.
offsets
,
assignment
=
self
.
assignment
,
progress_queue
=
self
.
progress_queue
,
**
{
"message.max.bytes"
:
str
(
500
*
1024
*
1024
)},
)
client
.
process
(
self
.
process_messages
)
def
process_messages
(
self
,
messages
):
"""
Process the incoming Kafka messages.
"""
for
object_type
,
message_list
in
messages
.
items
():
fixed_objects_by_partition
=
collections
.
defaultdict
(
list
)
for
message
in
message_list
:
fixed_objects_by_partition
[
message
.
partition
()]
.
extend
(
fix_objects
(
object_type
,
[
kafka_to_value
(
message
.
value
())])
)
for
partition
,
objects
in
fixed_objects_by_partition
.
items
():
for
obj
in
objects
:
self
.
process_message
(
object_type
,
partition
,
obj
)
def
process_message
(
self
,
object_type
,
partition
,
obj
):
"""
Process a single incoming Kafka message if the object it refers to has
not been processed yet.
It uses an on-disk set to make sure that each object is only ever
processed once.
"""
if
object_type
==
"origin_visit"
:
origin_id
=
origin_identifier
({
"url"
:
obj
[
"origin"
]})
visit
=
obj
[
"visit"
]
node_id
=
sha1
(
f
"{origin_id}:{visit}"
.
encode
())
.
digest
()
elif
object_type
==
"origin_visit_status"
:
if
obj
[
"status"
]
not
in
(
"partial"
,
"full"
):
# Temporary visit object, not useful for the exports
return
origin_id
=
origin_identifier
({
"url"
:
obj
[
"origin"
]})
visit
=
obj
[
"visit"
]
ts
=
obj
[
"date"
]
.
timestamp
()
node_id
=
sha1
(
f
"{origin_id}:{visit}:{ts}"
.
encode
())
.
digest
()
elif
object_type
==
"origin"
:
node_id
=
sha1
(
obj
[
"url"
]
.
encode
())
.
digest
()
elif
object_type
in
(
"content"
,
"skipped_content"
):
node_id
=
obj
[
"sha1_git"
]
else
:
node_id
=
obj
[
"id"
]
node_set
=
self
.
get_node_set_for_object
(
partition
,
node_id
)
if
not
node_set
.
add
(
node_id
):
# Node already processed, skipping.
return
for
exporter
in
self
.
exporters
:
try
:
exporter
.
process_object
(
object_type
,
obj
)
except
Exception
:
logging
.
exception
(
"Exporter
%s
: error while exporting the object:
%s
"
,
exporter
.
__class__
.
__name__
,
str
(
obj
),
)
File Metadata
Details
Attached
Mime Type
text/x-python
Expires
Fri, Jul 4, 3:13 PM (4 d, 15 h ago)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3295032
Attached To
rDDATASET Datasets
Event Timeline
Log In to Comment