# Copyright (C) 2016-2018  The Software Heritage developers
# See the AUTHORS file at the top-level directory of this distribution
# License: GNU General Public License version 3, or any later version
# See top-level LICENSE file for more information

import abc
import ast
import os
import logging
import shutil
import tempfile
import datetime
from copy import deepcopy
from contextlib import contextmanager

from swh.scheduler import get_scheduler
from swh.storage import get_storage
from swh.core.config import SWHConfig
from swh.objstorage import get_objstorage
from swh.objstorage.exc import ObjNotFoundError
from swh.indexer.storage import get_indexer_storage, INDEXER_CFG_KEY
from swh.model import hashutil
from swh.core import utils


@contextmanager
def write_to_temp(filename, data, working_directory):
    """Write the sha1's content in a temporary file.

    Args:
        filename (str): one of sha1's many filenames
        data (bytes): the sha1's content to write in temporary
          file

    Returns:
        The path to the temporary file created. That file is
        filled in with the raw content's data.

    """
    os.makedirs(working_directory, exist_ok=True)
    temp_dir = tempfile.mkdtemp(dir=working_directory)
    content_path = os.path.join(temp_dir, filename)

    with open(content_path, 'wb') as f:
        f.write(data)

    yield content_path
    shutil.rmtree(temp_dir)


class BaseIndexer(SWHConfig, metaclass=abc.ABCMeta):
    """Base class for indexers to inherit from.

    The main entry point is the :func:`run` function which is in
    charge of triggering the computations on the batch dict/ids
    received.

    Indexers can:

    - filter out ids whose data has already been indexed.
    - retrieve ids data from storage or objstorage
    - index this data depending on the object and store the result in
      storage.

    To implement a new object type indexer, inherit from the
    BaseIndexer and implement indexing:

    :meth:`~BaseIndexer.run`:
      object_ids are different depending on object. For example: sha1 for
      content, sha1_git for revision, directory, release, and id for origin

    To implement a new concrete indexer, inherit from the object level
    classes: :class:`ContentIndexer`, :class:`RevisionIndexer`,
    :class:`OriginIndexer`.

    Then you need to implement the following functions:

    :meth:`~BaseIndexer.filter`:
      filter out data already indexed (in storage).

    :meth:`~BaseIndexer.index_object`:
      compute index on id with data (retrieved from the storage or the
      objstorage by the id key) and return the resulting index computation.

    :meth:`~BaseIndexer.persist_index_computations`:
      persist the results of multiple index computations in the storage.

    The new indexer implementation can also override the following functions:

    :meth:`~BaseIndexer.prepare`:
      Configuration preparation for the indexer.  When overriding, this must
      call the `super().prepare()` instruction.

    :meth:`~BaseIndexer.check`:
      Configuration check for the indexer.  When overriding, this must call the
      `super().check()` instruction.

    :meth:`~BaseIndexer.register_tools`:
      This should return a dict of the tool(s) to use when indexing or
      filtering.

    """
    CONFIG = 'indexer/base'

    DEFAULT_CONFIG = {
        INDEXER_CFG_KEY: ('dict', {
            'cls': 'remote',
            'args': {
                'url': 'http://localhost:5007/'
            }
        }),
        'storage': ('dict', {
            'cls': 'remote',
            'args': {
                'url': 'http://localhost:5002/',
            }
        }),
        'objstorage': ('dict', {
            'cls': 'remote',
            'args': {
                'url': 'http://localhost:5003/',
            }
        })
    }

    ADDITIONAL_CONFIG = {}

    USE_TOOLS = True

    def __init__(self, config=None, **kw):
        """Prepare and check that the indexer is ready to run.

        """
        super().__init__()
        if config is not None:
            self.config = config
        else:
            config_keys = ('base_filename', 'config_filename',
                           'additional_configs', 'global_config')
            config_args = {k: v for k, v in kw.items() if k in config_keys}
            if self.ADDITIONAL_CONFIG:
                config_args.setdefault('additional_configs', []).append(
                    self.ADDITIONAL_CONFIG)
            self.config = self.parse_config_file(**config_args)
        self.prepare()
        self.check()
        self.log.debug('%s: config=%s', self, self.config)

    def prepare(self):
        """Prepare the indexer's needed runtime configuration.
           Without this step, the indexer cannot possibly run.

        """
        config_storage = self.config.get('storage')
        if config_storage:
            self.storage = get_storage(**config_storage)

        objstorage = self.config['objstorage']
        self.objstorage = get_objstorage(objstorage['cls'],
                                         objstorage['args'])

        idx_storage = self.config[INDEXER_CFG_KEY]
        self.idx_storage = get_indexer_storage(**idx_storage)

        _log = logging.getLogger('requests.packages.urllib3.connectionpool')
        _log.setLevel(logging.WARN)
        self.log = logging.getLogger('swh.indexer')

        if self.USE_TOOLS:
            self.tools = list(self.register_tools(
                self.config.get('tools', [])))
        self.results = []

    @property
    def tool(self):
        return self.tools[0]

    def check(self):
        """Check the indexer's configuration is ok before proceeding.
           If ok, does nothing. If not raise error.

        """
        if self.USE_TOOLS and not self.tools:
            raise ValueError('Tools %s is unknown, cannot continue' %
                             self.tools)

    def _prepare_tool(self, tool):
        """Prepare the tool dict to be compliant with the storage api.

        """
        return {'tool_%s' % key: value for key, value in tool.items()}

    def register_tools(self, tools):
        """Permit to register tools to the storage.

           Add a sensible default which can be overridden if not
           sufficient.  (For now, all indexers use only one tool)

           Expects the self.config['tools'] property to be set with
           one or more tools.

        Args:
            tools (dict/[dict]): Either a dict or a list of dict.

        Returns:
            list: List of dicts with additional id key.

        Raises:
            ValueError: if not a list nor a dict.

        """
        if isinstance(tools, list):
            tools = list(map(self._prepare_tool, tools))
        elif isinstance(tools, dict):
            tools = [self._prepare_tool(tools)]
        else:
            raise ValueError('Configuration tool(s) must be a dict or list!')

        if tools:
            return self.idx_storage.indexer_configuration_add(tools)
        else:
            return []

    def index(self, id, data):
        """Index computation for the id and associated raw data.

        Args:
            id (bytes): identifier
            data (bytes): id's data from storage or objstorage depending on
              object type

        Returns:
            dict: a dict that makes sense for the
            :meth:`.persist_index_computations` method.

        """
        raise NotImplementedError()

    def filter(self, ids):
        """Filter missing ids for that particular indexer.

        Args:
            ids ([bytes]): list of ids

        Yields:
            iterator of missing ids

        """
        yield from ids

    @abc.abstractmethod
    def persist_index_computations(self, results, policy_update):
        """Persist the computation resulting from the index.

        Args:

            results ([result]): List of results. One result is the
              result of the index function.
            policy_update ([str]): either 'update-dups' or 'ignore-dups' to
              respectively update duplicates or ignore them

        Returns:
            None

        """
        pass

    def next_step(self, results, task):
        """Do something else with computations results (e.g. send to another
        queue, ...).

        (This is not an abstractmethod since it is optional).

        Args:
            results ([result]): List of results (dict) as returned
              by index function.
            task (dict): a dict in the form expected by
              `scheduler.backend.SchedulerBackend.create_tasks`
              without `next_run`, plus an optional `result_name` key.

        Returns:
            None

        """
        if task:
            if getattr(self, 'scheduler', None):
                scheduler = self.scheduler
            else:
                scheduler = get_scheduler(**self.config['scheduler'])
            task = deepcopy(task)
            result_name = task.pop('result_name', None)
            task['next_run'] = datetime.datetime.now()
            if result_name:
                task['arguments']['kwargs'][result_name] = self.results
            scheduler.create_tasks([task])

    @abc.abstractmethod
    def run(self, ids, policy_update,
            next_step=None, **kwargs):
        """Given a list of ids:

        - retrieves the data from the storage
        - executes the indexing computations
        - stores the results (according to policy_update)

        Args:
            ids ([bytes]): id's identifier list
            policy_update (str): either 'update-dups' or 'ignore-dups' to
              respectively update duplicates or ignore them
            next_step (dict): a dict in the form expected by
              `scheduler.backend.SchedulerBackend.create_tasks`
              without `next_run`, plus a `result_name` key.
            **kwargs: passed to the `index` method

        """
        pass


class ContentIndexer(BaseIndexer):
    """A content indexer working on a list of ids directly.

    To work on indexer range, use the :class:`ContentRangeIndexer`
    instead.

    Note: :class:`ContentIndexer` is not an instantiable object. To
    use it, one should inherit from this class and override the
    methods mentioned in the :class:`BaseIndexer` class.

    """

    def run(self, ids, policy_update,
            next_step=None, **kwargs):
        """Given a list of ids:

        - retrieve the content from the storage
        - execute the indexing computations
        - store the results (according to policy_update)

        Args:
            ids (Iterable[Union[bytes, str]]): sha1's identifier list
            policy_update (str): either 'update-dups' or 'ignore-dups' to
                                 respectively update duplicates or ignore
                                 them
            next_step (dict): a dict in the form expected by
                        `scheduler.backend.SchedulerBackend.create_tasks`
                        without `next_run`, plus an optional `result_name` key.
            **kwargs: passed to the `index` method

        """
        ids = [hashutil.hash_to_bytes(id_) if isinstance(id_, str) else id_
               for id_ in ids]
        results = []
        try:
            for sha1 in ids:
                try:
                    raw_content = self.objstorage.get(sha1)
                except ObjNotFoundError:
                    self.log.warning('Content %s not found in objstorage' %
                                     hashutil.hash_to_hex(sha1))
                    continue
                res = self.index(sha1, raw_content, **kwargs)
                if res:  # If no results, skip it
                    results.append(res)

            self.persist_index_computations(results, policy_update)
            self.results = results
            return self.next_step(results, task=next_step)
        except Exception:
            self.log.exception(
                'Problem when reading contents metadata.')


class ContentRangeIndexer(BaseIndexer):
    """A content range indexer.

    This expects as input a range of ids to index.

    To work on a list of ids, use the :class:`ContentIndexer` instead.

    Note: :class:`ContentRangeIndexer` is not an instantiable
    object. To use it, one should inherit from this class and override
    the methods mentioned in the :class:`BaseIndexer` class.

    """
    @abc.abstractmethod
    def indexed_contents_in_range(self, start, end):
        """Retrieve indexed contents within range [start, end].

        Args:
            start (bytes): Starting bound from range identifier
            end (bytes): End range identifier

        Yields:
            bytes: Content identifier present in the range ``[start, end]``

        """
        pass

    def _list_contents_to_index(self, start, end, indexed):
        """Compute from storage the new contents to index in the range [start,
           end]. The already indexed contents are skipped.

        Args:
            start (bytes): Starting bound from range identifier
            end (bytes): End range identifier
            indexed (Set[bytes]): Set of content already indexed.

        Yields:
            bytes: Identifier of contents to index.

        """
        if not isinstance(start, bytes) or not isinstance(end, bytes):
            raise TypeError('identifiers must be bytes, not %r and %r.' %
                            (start, end))
        while start:
            result = self.storage.content_get_range(start, end)
            contents = result['contents']
            for c in contents:
                _id = hashutil.hash_to_bytes(c['sha1'])
                if _id in indexed:
                    continue
                yield _id
            start = result['next']

    def _index_contents(self, start, end, indexed, **kwargs):
        """Index the contents from within range [start, end]

        Args:
            start (bytes): Starting bound from range identifier
            end (bytes): End range identifier
            indexed (Set[bytes]): Set of content already indexed.

        Yields:
            dict: Data indexed to persist using the indexer storage

        """
        for sha1 in self._list_contents_to_index(start, end, indexed):
            try:
                raw_content = self.objstorage.get(sha1)
            except ObjNotFoundError:
                self.log.warning('Content %s not found in objstorage' %
                                 hashutil.hash_to_hex(sha1))
                continue
            res = self.index(sha1, raw_content, **kwargs)
            if res:
                if not isinstance(res['id'], bytes):
                    raise TypeError(
                        '%r.index should return ids as bytes, not %r' %
                        (self.__class__.__name__, res['id']))
                yield res

    def _index_with_skipping_already_done(self, start, end):
        """Index not already indexed contents in range [start, end].

        Args:
            start** (Union[bytes, str]): Starting range identifier
            end (Union[bytes, str]): Ending range identifier

        Yields:
            bytes: Content identifier present in the range
            ``[start, end]`` which are not already indexed.

        """
        while start:
            indexed_page = self.indexed_contents_in_range(start, end)
            contents = indexed_page['ids']
            _end = contents[-1] if contents else end
            yield from self._index_contents(
                    start, _end, contents)
            start = indexed_page['next']

    def run(self, start, end, skip_existing=True, **kwargs):
        """Given a range of content ids, compute the indexing computations on
           the contents within. Either the indexer is incremental
           (filter out existing computed data) or not (compute
           everything from scratch).

        Args:
            start (Union[bytes, str]): Starting range identifier
            end (Union[bytes, str]): Ending range identifier
            skip_existing (bool): Skip existing indexed data
              (default) or not
            **kwargs: passed to the `index` method

        Returns:
            bool: True if data was indexed, False otherwise.

        """
        with_indexed_data = False
        try:
            if isinstance(start, str):
                start = hashutil.hash_to_bytes(start)
            if isinstance(end, str):
                end = hashutil.hash_to_bytes(end)

            if skip_existing:
                gen = self._index_with_skipping_already_done(start, end)
            else:
                gen = self._index_contents(start, end, indexed=[])

            for results in utils.grouper(gen,
                                         n=self.config['write_batch_size']):
                self.persist_index_computations(
                    results, policy_update='update-dups')
                with_indexed_data = True
        except Exception:
            self.log.exception(
                'Problem when computing metadata.')
        finally:
            return with_indexed_data


def origin_get_params(id_):
    """From any of the two types of origin identifiers (int or
    type+url), returns a dict that can be passed to Storage.origin_get.
    Also accepts JSON-encoded forms of these (used via the task scheduler).

    >>> from pprint import pprint
    >>> origin_get_params(123)
    {'id': 123}
    >>> pprint(origin_get_params(['git', 'https://example.com/foo.git']))
    {'type': 'git', 'url': 'https://example.com/foo.git'}
    >>> origin_get_params("123")
    {'id': 123}
    >>> pprint(origin_get_params('["git", "https://example.com/foo.git"]'))
    {'type': 'git', 'url': 'https://example.com/foo.git'}
    """
    if isinstance(id_, str):
        # Data coming from JSON, which requires string keys, so
        # one extra level of deserialization is needed
        id_ = ast.literal_eval(id_)
    if isinstance(id_, (tuple, list)):
        if len(id_) != 2:
            raise TypeError('Expected a (type, url) tuple.')
        (type_, url) = id_
        params = {'type': type_, 'url': url}
    elif isinstance(id_, int):
        params = {'id': id_}
    else:
        raise TypeError('Invalid value in "ids": %r' % id_)
    return params


class OriginIndexer(BaseIndexer):
    """An object type indexer, inherits from the :class:`BaseIndexer` and
    implements Origin indexing using the run method

    Note: the :class:`OriginIndexer` is not an instantiable object.
    To use it in another context one should inherit from this class
    and override the methods mentioned in the :class:`BaseIndexer`
    class.

    """
    def run(self, ids, policy_update='update-dups', parse_ids=True,
            next_step=None, **kwargs):
        """Given a list of origin ids:

        - retrieve origins from storage
        - execute the indexing computations
        - store the results (according to policy_update)

        Args:
            ids ([Union[int, Tuple[str, bytes]]]): list of origin ids or
              (type, url) tuples.
            policy_update (str): either 'update-dups' or 'ignore-dups' to
              respectively update duplicates (default) or ignore them
            next_step (dict): a dict in the form expected by
              `scheduler.backend.SchedulerBackend.create_tasks` without
              `next_run`, plus an optional `result_name` key.
            parse_ids (bool): Do we need to parse id or not (default)
            **kwargs: passed to the `index` method

        """
        if parse_ids:
            ids = [o.split('+', 1) if ':' in o else int(o)  # type+url or id
                   for o in ids]

        origins_filtered = []
        origins = self.storage.origin_get(
            [origin_get_params(id_) for id_ in ids])
        for (id_, origin) in zip(ids, origins):
            if not origin:
                self.log.warning('Origin %s not found in storage' %
                                 id_)
                continue
            origins_filtered.append(origin)

        results = self.index_list(origins_filtered, **kwargs)

        self.persist_index_computations(results, policy_update)
        self.results = results
        return self.next_step(results, task=next_step)

    def index_list(self, origins, **kwargs):
        results = []
        for origin in origins:
            try:
                res = self.index(origin, **kwargs)
                if res:  # If no results, skip it
                    results.append(res)
            except Exception:
                self.log.exception(
                    'Problem when processing origin %s',
                    origin['id'])
        return results


class RevisionIndexer(BaseIndexer):
    """An object type indexer, inherits from the :class:`BaseIndexer` and
    implements Revision indexing using the run method

    Note: the :class:`RevisionIndexer` is not an instantiable object.
    To use it in another context one should inherit from this class
    and override the methods mentioned in the :class:`BaseIndexer`
    class.

    """
    def run(self, ids, policy_update, next_step=None):
        """Given a list of sha1_gits:

        - retrieve revisions from storage
        - execute the indexing computations
        - store the results (according to policy_update)

        Args:
            ids ([bytes or str]): sha1_git's identifier list
            policy_update (str): either 'update-dups' or 'ignore-dups' to
              respectively update duplicates or ignore them

        """
        results = []
        ids = [hashutil.hash_to_bytes(id_) if isinstance(id_, str) else id_
               for id_ in ids]
        revs = self.storage.revision_get(ids)

        for rev in revs:
            if not rev:
                self.log.warning('Revisions %s not found in storage' %
                                 list(map(hashutil.hash_to_hex, ids)))
                continue
            try:
                res = self.index(rev)
                if res:  # If no results, skip it
                    results.append(res)
            except Exception:
                self.log.exception(
                        'Problem when processing revision')
        self.persist_index_computations(results, policy_update)
        self.results = results
        return self.next_step(results, task=next_step)
