# Copyright (C) 2018  The Software Heritage developers
# See the AUTHORS file at the top-level directory of this distribution
# License: GNU General Public License version 3, or any later version
# See top-level LICENSE file for more information

# Initially imported from https://github.com/DataDog/datadogpy/
# at revision 62b3a3e89988dc18d78c282fe3ff5d1813917436
#
# Copyright (c) 2015, Datadog <info@datadoghq.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#     * Neither the name of Datadog nor the names of its contributors may be
#       used to endorse or promote products derived from this software without
#       specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#
# Vastly adapted for integration in swh.core:
#
# - Removed python < 3.5 compat code
# - trimmed the imports down to be a single module
# - adjust some options:
#   - drop unix socket connection option
#   - add environment variable support for setting the statsd host and
#     port (pulled the idea from the main python statsd module)
#   - only send timer metrics in milliseconds (that's what
#     prometheus-statsd-exporter expects)
#   - drop DataDog-specific metric types (that are unsupported in
#     prometheus-statsd-exporter)
# - made the tags a dict instead of a list (prometheus-statsd-exporter only
#   supports tags with a value, mirroring prometheus)
# - switch from time.time to time.monotonic
# - improve unit test coverage
# - documentation cleanup


from asyncio import iscoroutinefunction
from functools import wraps
import itertools
import logging
import os
from random import random
import socket
import threading
from time import monotonic
import warnings

log = logging.getLogger("swh.core.statsd")


class TimedContextManagerDecorator(object):
    """
    A context manager and a decorator which will report the elapsed time in
    the context OR in a function call.

    Attributes:
      elapsed (float): the elapsed time at the point of completion
    """

    def __init__(
        self, statsd, metric=None, error_metric=None, tags=None, sample_rate=1
    ):
        self.statsd = statsd
        self.metric = metric
        self.error_metric = error_metric
        self.tags = tags
        self.sample_rate = sample_rate
        self.elapsed = None  # this is for testing purpose

    def __call__(self, func):
        """
        Decorator which returns the elapsed time of the function call.

        Default to the function name if metric was not provided.
        """
        if not self.metric:
            self.metric = "%s.%s" % (func.__module__, func.__name__)

        # Coroutines
        if iscoroutinefunction(func):

            @wraps(func)
            async def wrapped_co(*args, **kwargs):
                start = monotonic()
                try:
                    result = await func(*args, **kwargs)
                except:  # noqa
                    self._send_error()
                    raise
                self._send(start)
                return result

            return wrapped_co

        # Others
        @wraps(func)
        def wrapped(*args, **kwargs):
            start = monotonic()
            try:
                result = func(*args, **kwargs)
            except:  # noqa
                self._send_error()
                raise
            self._send(start)
            return result

        return wrapped

    def __enter__(self):
        if not self.metric:
            raise TypeError("Cannot used timed without a metric!")
        self._start = monotonic()
        return self

    def __exit__(self, type, value, traceback):
        # Report the elapsed time of the context manager if no error.
        if type is None:
            self._send(self._start)
        else:
            self._send_error()

    def _send(self, start):
        elapsed = (monotonic() - start) * 1000
        self.statsd.timing(
            self.metric, elapsed, tags=self.tags, sample_rate=self.sample_rate
        )
        self.elapsed = elapsed

    def _send_error(self):
        if self.error_metric is None:
            self.error_metric = self.metric + "_error_count"
        self.statsd.increment(self.error_metric, tags=self.tags)

    def start(self):
        """Start the timer"""
        self.__enter__()

    def stop(self):
        """Stop the timer, send the metric value"""
        self.__exit__(None, None, None)


class Statsd(object):
    """Initialize a client to send metrics to a StatsD server.

    Arguments:
      host (str): the host of the StatsD server. Defaults to localhost.
      port (int): the port of the StatsD server. Defaults to 8125.

      max_buffer_size (int): Maximum number of metrics to buffer before
        sending to the server if sending metrics in batch

      namespace (str): Namespace to prefix all metric names

      constant_tags (Dict[str, str]): Tags to attach to all metrics

    Note:
      This class also supports the following environment variables:

      STATSD_HOST
        Override the default host of the statsd server
      STATSD_PORT
        Override the default port of the statsd server
      STATSD_TAGS
        Tags to attach to every metric reported. Example value:

        "label:value,other_label:other_value"
    """

    def __init__(
        self,
        host=None,
        port=None,
        max_buffer_size=50,
        namespace=None,
        constant_tags=None,
    ):
        # Connection
        if host is None:
            host = os.environ.get("STATSD_HOST") or "localhost"
        self.host = host

        if port is None:
            port = os.environ.get("STATSD_PORT") or 8125
        self.port = int(port)

        # Socket
        self._socket = None
        self.lock = threading.Lock()
        self.max_buffer_size = max_buffer_size
        self._send = self._send_to_server
        self.encoding = "utf-8"

        # Tags
        self.constant_tags = {}
        tags_envvar = os.environ.get("STATSD_TAGS", "")
        for tag in tags_envvar.split(","):
            if not tag:
                continue
            if ":" not in tag:
                warnings.warn(
                    "STATSD_TAGS needs to be in key:value format, " "%s invalid" % tag,
                    UserWarning,
                )
                continue
            k, v = tag.split(":", 1)
            self.constant_tags[k] = v

        if constant_tags:
            self.constant_tags.update(
                {str(k): str(v) for k, v in constant_tags.items()}
            )

        # Namespace
        if namespace is not None:
            namespace = str(namespace)
        self.namespace = namespace

    def __enter__(self):
        self.open_buffer(self.max_buffer_size)
        return self

    def __exit__(self, type, value, traceback):
        self.close_buffer()

    def gauge(self, metric, value, tags=None, sample_rate=1):
        """
        Record the value of a gauge, optionally setting a list of tags and a
        sample rate.

        >>> statsd.gauge('users.online', 123)
        >>> statsd.gauge('active.connections', 1001, tags={"protocol": "http"})
        """
        return self._report(metric, "g", value, tags, sample_rate)

    def increment(self, metric, value=1, tags=None, sample_rate=1):
        """
        Increment a counter, optionally setting a value, tags and a sample
        rate.

        >>> statsd.increment('page.views')
        >>> statsd.increment('files.transferred', 124)
        """
        self._report(metric, "c", value, tags, sample_rate)

    def decrement(self, metric, value=1, tags=None, sample_rate=1):
        """
        Decrement a counter, optionally setting a value, tags and a sample
        rate.

        >>> statsd.decrement('files.remaining')
        >>> statsd.decrement('active.connections', 2)
        """
        metric_value = -value if value else value
        self._report(metric, "c", metric_value, tags, sample_rate)

    def histogram(self, metric, value, tags=None, sample_rate=1):
        """
        Sample a histogram value, optionally setting tags and a sample rate.

        >>> statsd.histogram('uploaded.file.size', 1445)
        >>> statsd.histogram('file.count', 26, tags={"filetype": "python"})
        """
        self._report(metric, "h", value, tags, sample_rate)

    def timing(self, metric, value, tags=None, sample_rate=1):
        """
        Record a timing, optionally setting tags and a sample rate.

        >>> statsd.timing("query.response.time", 1234)
        """
        self._report(metric, "ms", value, tags, sample_rate)

    def timed(self, metric=None, error_metric=None, tags=None, sample_rate=1):
        """
        A decorator or context manager that will measure the distribution of a
        function's/context's run time. Optionally specify a list of tags or a
        sample rate. If the metric is not defined as a decorator, the module
        name and function name will be used. The metric is required as a
        context manager.
        ::

            @statsd.timed('user.query.time', sample_rate=0.5)
            def get_user(user_id):
                # Do what you need to ...
                pass

            # Is equivalent to ...
            with statsd.timed('user.query.time', sample_rate=0.5):
                # Do what you need to ...
                pass

            # Is equivalent to ...
            start = time.monotonic()
            try:
                get_user(user_id)
            finally:
                statsd.timing('user.query.time', time.monotonic() - start)
        """
        return TimedContextManagerDecorator(
            statsd=self,
            metric=metric,
            error_metric=error_metric,
            tags=tags,
            sample_rate=sample_rate,
        )

    def set(self, metric, value, tags=None, sample_rate=1):
        """
        Sample a set value.

        >>> statsd.set('visitors.uniques', 999)
        """
        self._report(metric, "s", value, tags, sample_rate)

    @property
    def socket(self):
        """
        Return a connected socket.

        Note: connect the socket before assigning it to the class instance to
        avoid bad thread race conditions.
        """
        with self.lock:
            if not self._socket:
                sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
                sock.connect((self.host, self.port))
                self._socket = sock

            return self._socket

    def open_buffer(self, max_buffer_size=50):
        """
        Open a buffer to send a batch of metrics in one packet.

        You can also use this as a context manager.

        >>> with Statsd() as batch:
        ...     batch.gauge('users.online', 123)
        ...     batch.gauge('active.connections', 1001)
        """
        self.max_buffer_size = max_buffer_size
        self.buffer = []
        self._send = self._send_to_buffer

    def close_buffer(self):
        """
        Flush the buffer and switch back to single metric packets.
        """
        self._send = self._send_to_server

        if self.buffer:
            # Only send packets if there are packets to send
            self._flush_buffer()

    def close_socket(self):
        """
        Closes connected socket if connected.
        """
        with self.lock:
            if self._socket:
                self._socket.close()
                self._socket = None

    def _report(self, metric, metric_type, value, tags, sample_rate):
        """
        Create a metric packet and send it.
        """
        if value is None:
            return

        if sample_rate != 1 and random() > sample_rate:
            return

        # Resolve the full tag list
        tags = self._add_constant_tags(tags)

        # Create/format the metric packet
        payload = "%s%s:%s|%s%s%s" % (
            (self.namespace + ".") if self.namespace else "",
            metric,
            value,
            metric_type,
            ("|@" + str(sample_rate)) if sample_rate != 1 else "",
            ("|#" + ",".join("%s:%s" % (k, v) for (k, v) in sorted(tags.items())))
            if tags
            else "",
        )
        # Send it
        self._send(payload)

    def _send_to_server(self, packet):
        try:
            # If set, use socket directly
            self.socket.send(packet.encode("utf-8"))
        except socket.timeout:
            return
        except socket.error:
            log.debug(
                "Error submitting statsd packet."
                " Dropping the packet and closing the socket."
            )
            self.close_socket()

    def _send_to_buffer(self, packet):
        self.buffer.append(packet)
        if len(self.buffer) >= self.max_buffer_size:
            self._flush_buffer()

    def _flush_buffer(self):
        self._send_to_server("\n".join(self.buffer))
        self.buffer = []

    def _add_constant_tags(self, tags):
        return {
            str(k): str(v)
            for k, v in itertools.chain(
                self.constant_tags.items(), (tags if tags else {}).items(),
            )
        }


statsd = Statsd()
